Table of Contents

1. **Introduction** .. 5
 1.1 Background .. 5
 1.2 Scope, Purpose, and Audience of this Implementation Guide 7

2. **Alcohol Screening and Brief Intervention: Clinical Implementation Considerations** 8
 2.1 Alcohol Screening Implementation Considerations ... 9
 2.1.1 Alcohol Screening Instrument Selection .. 9
 2.1.2 Alcohol Screening Implementation .. 10
 2.2 Brief Behavioral Counseling Intervention Implementation Considerations 11
 2.3 ASBI Implementation Resources ... 12

3. **Artifact Description and Use** ... 13
 3.1 Artifact Description .. 13
 3.2 Health Scenarios Supported by this Artifact .. 14
 3.3 Health Scenarios Supported With Customization of the Coded Expression 16
 3.4 CDS Logic Descriptions and Recommended Actions .. 18

4. **Guideline Interpretation and Clinical Decisions** ... 19
 4.1 Evidence-based Sources for Artifact Development ... 19
 4.2 Guideline Translation Summary .. 20

5. **Technical Details** .. 23
 5.1 Artifact Definition Standards ... 23
 5.1.1 Fast Healthcare Interoperability Resources® ... 23
 5.1.2 Clinical Reasoning Module .. 24
 5.1.3 Structured Data Capture .. 24
 5.1.4 Clinical Quality Language .. 24
 5.2 Artifact Definition Structure .. 24
 5.2.1 PlanDefinition ... 25
 5.2.2 Questionnaire ... 26
 5.2.3 Library .. 28
 5.3 Artifact Implementation Standards .. 29
 5.3.1 Sustainable Medical Applications, Reusable Technologies 29
 5.3.2 CDS Hooks ... 30
 5.4 Artifact Implementation Structure ... 30
 5.4.1 FHIR Server .. 31
 5.4.2 CDS Launcher .. 32
 5.4.3 SMART on FHIR App ... 32

6. **Artifact Testing** .. 33
 6.1 Levels of Testing .. 33
List of Figures

Figure 1. Depiction of the relationship between the components that define the artifact 25
Figure 2. PlanDefinition component expressed in FHIR Shorthand (FSH) 26
Figure 3. Portion of the USAUDIT Questionnaire showing Question 1 expressed in FHIR Shorthand .. 27
Figure 4. An excerpt from the CQL logic within the Library .. 29
Figure 5. Notional depiction of ASBI CDS integration with a health IT system 31
Figure 6. Diagram showing the test-driven development approach taken for authoring CQL..... 34
Figure 7. Example logic test case ... 36
Figure 8. Notional ASBI CDS integration depicting which aspects can be emulated without a real health IT system .. 41
Figure 9: USAUDIT Alcohol Screening CDS Logic Flow .. 45

List of Tables

Table 1. ASBI Implementation Resources... 12
Table 2. List of logical expressions defined in the CQL Library and referenced in the Questionnaire .. 28
Table 3. Required FHIR Server capabilities ... 32
Table 4. List of logic tests ... 37
Table 5: CDS Concept Definitions ... 54
Table 6: Artifact Development Decision Log .. 58
Table 7: USAUDIT Screening Questionnaire .. 63
Table 8: FHIR Data Requirements for this Artifact.. 65
1. Introduction

The Centers for Disease Control and Prevention (CDC), within the U.S. Department of Health and Human Services (HHS), is the primary federal agency responsible for safeguarding the nation’s public health through the control and prevention of disease, injury, and disability. Within CDC, the National Center on Birth Defects and Developmental Disabilities’ (NCBDDD) mission is to advance the health and well-being of babies, children, and people with disabilities. NCBDDD aims to save babies through surveillance, research, and prevention of birth defects and infant disorders. As part of these efforts, the NCBDDD engaged the CMS Alliance to Modernize Healthcare federally funded research and development center (Health FFRDC) to collaborate on a project that seeks to help prevent prenatal alcohol use. Alcohol use during pregnancy can cause birth defects and developmental disabilities, collectively known as fetal alcohol spectrum disorders (FASDs). Alcohol use during pregnancy is also linked to other negative outcomes, such as miscarriage, stillbirth, preterm (early) birth, and sudden infant death syndrome. This project seeks to develop standards-based, interoperable alcohol screening and brief intervention (ASBI) clinical decision support (CDS) artifacts (i.e., actionable medical knowledge such as clinical practice guidelines, peer-reviewed articles, or local best practices, translated into computable and interoperable CDS logic expressions) that can help decrease alcohol use during pregnancy and reduce the risk of FASDs and other negative pregnancy and birth outcomes.

The U.S. Preventive Services Task Force (USPSTF) and other organizations have provided evidence-based recommendations for the implementation of ASBI in primary care settings for adults age 18 years or older, including pregnant women, to reduce unhealthy alcohol use (Curry et al., 2018). To encourage the adoption of ASBI, CDC engaged with the Health FFRDC to support transformation of the recommendation guidance and other evidence-based resources into shareable and standards-based CDS that can be integrated into electronic health record (EHR) systems and other health information technology (IT).

1.1 Background

Unhealthy alcohol use encompasses a spectrum of behaviors, from risky drinking (drinking more than the recommended daily, weekly, or per-occasion amounts) to alcohol use disorder (harmful alcohol use, abuse, or dependence). Any alcohol use is considered unhealthy in pregnant women (Curry et al., 2018). Excessive alcohol consumption (i.e., excessive drinking) includes binge drinking (i.e., drinking 4 or more drinks for women or 5 or more drinks for men, within about two hours) and heavy drinking (i.e., 8 or more drinks a week for women and 15 or more drinks a week for men). Excessive alcohol use also includes any drinking by pregnant women or those under 21 years of age (U.S. Department of Health and Human Services and U.S. Department of Agriculture, 2015). Excessive drinking is associated with a variety of short- and long-term health risks, including motor vehicle crashes, violence, sexual risk behaviors, high blood pressure, and various cancers. The risk of harms increases with the amount of alcohol consumed.

1 When referring to drinking alcohol above recommended guidelines, the terms “excessive alcohol consumption,” “excessive alcohol use,” or “excessive drinking” are used in this guide to align with the U.S. Department of Health and Human Services and the U.S. Department of Agriculture’s 2015-2020 Dietary Guidelines for Americans. If an alternate term is used within a cited reference (e.g., “unhealthy alcohol use”), the alternate term has been retained.
For some conditions, like some cancers, the risk increases even at very low levels of alcohol consumption (i.e., less than one drink) (Centers for Disease Control and Prevention, 2018). Excessive drinking was responsible for nearly 10 percent of deaths in the United States from 2006 to 2010 (O’Connor et al., 2018) (Mokdad, Marks, Stroup, & Gerberding, 2004), and is the third leading cause of preventable deaths in the U.S. (National Institute on Alcohol Abuse and Alcoholism, n.d.) (Stahre, Roeber, Kanny, Brewer, & Zhang, 2014). In addition, prenatal alcohol exposure is a leading preventable cause of birth defects and developmental disabilities (Ismail, Buckley, Budacki, Jabbar, & Gallicano, 2010).

There are a number of screening instruments with documented evidence of having acceptable sensitivity and specificity for detecting unhealthy alcohol use (Curry et al., 2018). Screening, followed by a brief intervention when indicated, has been shown to reduce episodes of binge drinking and the amount of alcohol consumed weekly and to increase compliance with recommended drinking limits (O’Connor et al., 2018). In a 2018 recommendation statement, the USPSTF recommended that ASBI be implemented for all adults 18 years and older, including pregnant individuals, in primary healthcare settings (Curry et al., 2018). However, multiple reports indicate that ASBI is not occurring routinely or consistently (McKnight-Eily et al., 2014, 2020).

As part of this project, the Health FFRDC worked with NCBDDD to develop ASBI CDS artifacts, with the aim to accomplish the following outcomes:

- Drive improved public health outcomes by enabling consistent interpretation and implementation of evidence-based guidelines for ASBI. Improved public health outcomes include an increase in the number of adults, including women of reproductive age, who are screened for alcohol use; an increase in the number of adults screened as drinking above recommended levels who are delivered a brief intervention; and a decrease in alcohol use among women of reproductive age.
- Exercise a reproducible process for translating clinical practice guidelines into standards-based, interoperable formats for integration into local health IT systems.
- Contribute to efforts to improve speed, efficiency, accuracy, consistency, and effectiveness of dissemination and implementation of clinical practice guidelines.

To facilitate NCBDDD’s mission and progress toward these outcomes, the Health FFRDC Development Team created three alcohol screening CDS artifacts and two alcohol brief intervention CDS artifacts:

- Alcohol Screening Using the USAUDIT (Alcohol Use Disorders Identification Test, Adapted for Use in the United States), referred to as the “USAUDIT Alcohol Screening” artifact
- Alcohol Screening Using the World Health Organization (WHO) Alcohol Use Disorders Identification Test (AUDIT), referred to as the “WHO AUDIT Alcohol Screening” artifact
- Alcohol and Other Substance Use Screening Using the National Institute on Drug Use Quick Screen (NIDA QS) and USAUDIT (Alcohol Use Disorders Identification Test, Adapted for Use in the United States), referred to as the “NIDA QS to USAUDIT Alcohol Screening” artifact
• Brief Behavioral Counseling Interventions for Excessive Alcohol Consumption with Optional Referral to Treatment, referred to as the “Alcohol Brief Intervention and Referral” artifact
• Facilitating Shared Decision Making For People Who Drink Alcohol: A Patient Decision Aid, referred to as the “Decision Aid for Your Drinking” artifact

These CDS artifacts are available to the public and are posted on CDS Connect, a web-based platform for authoring and sharing CDS artifacts. The information posted includes tools and resources (i.e., implementation guides, synthetic testing data, links to any CDS software and other accompanying material) that serve as building blocks when evidence-based practice recommendations are translated into interoperable CDS.

1.2 Scope, Purpose, and Audience of this Implementation Guide

This implementation guide provides information about the development and potential uses of the USAUDIT Alcohol Screening artifact, which helps providers identify adults who should be screened for alcohol use and delivers a series of screening questions that align with guidance published in USAUDIT: A Guide for Primary Care Practitioners. The resulting USAUDIT-C (USAUDIT-Consumption) and/or USAUDIT score can then guide a clinician in discussing alcohol use with the patient. The logic for the CDS artifact is derived from several evidence-based guidelines. In instances where the USAUDIT guide did not provide specific guidance, the CDS Development Team used the WHO AUDIT guide and numerous additional references listed in Section 4.1 and the List of References.

Section 2 of this implementation guide provides high-level information and additional references for healthcare organizations considering implementing this CDS artifact (and any of the associated ASBI CDS artifacts). The information focuses on the adoption of ASBI by clinical staff, and the references listed in Table 1 contain much more detailed guidance on the clinical aspects of ASBI implementation.

The remaining sections of this implementation guide contain details about the CDS artifact, logic expressions, guideline interpretation and decisions, and technical implementation considerations.

Organizations that might consider implementing this CDS logic include primary healthcare practices, as well as obstetrics-gynecology clinics and other healthcare organizations interested in implementing evidence-based CDS to help deliver personalized alcohol screening to their patients.

Various audiences may find the information in this implementation guide helpful:

• Clinicians, Quality Improvement Leaders, and Health Administrators at healthcare organizations and primary care practices who wish to implement, test, and execute CDS related to alcohol screening and brief intervention in their EHRs or other health IT systems
• CDS Developers and Informaticists who may use components of this CDS logic as a foundation for other preventive health CDS or who want to use well-developed structured logic and Clinical Quality Language (CQL) in their own work
• **Organizations or Individuals** interested in developing their own CDS artifacts, who may find this document helpful as a resource for the process of translating clinical guidelines into mature CQL artifacts

2. **Alcohol Screening and Brief Intervention: Clinical Implementation Considerations**

As mentioned previously, the USPSTF recommends alcohol screening in primary care settings for adults 18 years or older, including pregnant women, and providing brief behavioral counseling interventions to those individuals engaged in unhealthy alcohol consumption. Alcohol screening and brief behavioral counseling interventions have been shown to be effective in reducing unhealthy alcohol use (Curry et al., 2018). Although 81 percent of U.S. adults in 13 states and the District of Columbia reported being asked by their healthcare provider about alcohol use, only about 38 percent reported being asked about binge drinking (i.e., drinking 4 or more drinks for women and 5 or more drinks for men on one occasion) during a routine checkup in the last two years (McKnight-Eily et al., 2020). Among adults who reported binge-level consumption, 80 percent (or four of five persons) were not counseled to reduce their drinking at that checkup (McKnight-Eily et al., 2020).

Increasing the rate of alcohol screening and brief behavioral counseling for excessive alcohol consumption is an important priority for preventive care. According to CDC, alcohol is the third leading cause of preventable death in the United States (Mokdad et al., 2004), with more than 88,000 people dying from alcohol-related causes annually (Stahre et al., 2014). The rate of alcohol-related deaths more than doubled from 1999 to 2017, along with an increase in alcohol consumption (White, Castle, Hingson, & Powell, 2020). In addition, 55.3 percent of people 18 years or older reported that they drank alcohol within the past month, with more than 25 percent engaging in binge drinking, defined as having more than 4 drinks for women or 5 drinks for men in about two hours (National Institute on Alcohol Abuse and Alcoholism, n.d.) (Substance Abuse and Mental Health Services Administration, 2018).

Prenatal exposure to alcohol can lead to several adverse events and increases the risk of birth defects and developmental disabilities such as FASDs. Despite this fact, between 2015 and 2017, one in nine pregnant women in the U.S. reported drinking alcohol in the past 30 days, with one-third engaging in binge drinking (Denny, Acero, Naimi, & Kim, 2019).

Although this implementation guide focuses on alcohol screening, a holistic approach to alcohol screening and brief intervention is important. This includes selecting and administering evidence-based alcohol screening instruments to identify patients who may require brief behavioral counseling and possible referral for evaluation and treatment for alcohol use disorders, and providing information to patients to help them understand their drinking and consider the need to reduce consumption or quit.

The following sections provide high-level information for potential implementers to consider before integrating alcohol screening and brief intervention into their clinical practice. The information focuses on the adoption of ASBI by clinical staff. Resources that provide more
detailed guidance on planning, implementing, and ongoing process improvement for ASBI implementation are provided in Section 2.3.

2.1 Alcohol Screening Implementation Considerations

Higgins-Biddle et al. pointed out that when considering the implementation of alcohol screening, early evaluation and planning is necessary to determine (Centers for Disease Control and Prevention, 2014):

- Which patients will be screened and how often
- Which alcohol screening instrument will be used
- How and where the screening will take place
- How the screening results will be stored and shared with other staff, as well as recorded in the patient’s record

2.1.1 Alcohol Screening Instrument Selection

Selecting an alcohol screening instrument is an important decision. Numerous alcohol screening instruments are available, but only a few have been fully tested for sensitivity and specificity. The full, 10-question AUDIT is considered the “gold standard” of alcohol screening instruments, with the first three questions measuring alcohol consumption, and the next seven questions measuring alcohol-related harm and symptoms of dependence (Centers for Disease Control and Prevention, 2014).

The developers of the WHO version of the AUDIT assumed a standard drink size of 10 grams; averaging drink sizes across the countries studied as the typical serving size of drinks and recommendations on what constitutes “drinking too much” varies from country to country (Higgins-Biddle & Babor, 2018). Consequently, the WHO AUDIT manual recommends adapting AUDIT questions #2 and #3 based on the standard drink size and recommended alcohol consumption levels in the country where it will be used (Babor & Higgins-Biddle, 2001).

The developers of the WHO version of the AUDIT assumed a standard drink size of 10 grams; averaging drink sizes across the countries studied as the typical serving size of drinks and recommendations on what constitutes “drinking too much” varies from country to country (Higgins-Biddle & Babor, 2018). Consequently, the WHO AUDIT manual recommends adapting AUDIT questions #2 and #3 based on the standard drink size and recommended alcohol consumption levels in the country where it will be used (Babor & Higgins-Biddle, 2001).

When researching the evidence on the sensitivity and specificity of various screening instruments, the USPSTF identified the original WHO version of the AUDIT-C (i.e., AUDIT-Consumption), followed by the more detailed questions of the full WHO AUDIT, as providing both high sensitivity and specificity (O’Connor et al., 2018). The USPSTF further recommended that if patients screen positive on a brief screening instrument (e.g., the AUDIT-C, USAUDIT-C or Single Alcohol Screening Question [SASQ]), clinicians should follow up with a more in-depth assessment with greater specificity (e.g., the AUDIT) (Curry et al., 2018). In their recommendation statement for screening and behavioral counseling to reduce unhealthy alcohol use, the USPSTF found that the WHO version of the AUDIT-C and AUDIT “appeared to be the best overall instruments for screening adults for the full spectrum of unhealthy alcohol use” (Curry et al., 2018). The Task Force also noted that although no studies on the USAUDIT or USAUDIT-C were published during their evidence search window, the use of the U.S. versions of the AUDIT-C and AUDIT, designed to use U.S. standard drink sizes and align with National Institute on Alcohol Abuse and Alcoholism (NIAAA) recommendations, were likely to improve on the performance of the WHO versions of the AUDIT and AUDIT-C (O’Connor et al., 2018).
The USAUDIT is based on the same 10 questions developed by WHO, adjusted for the standard U.S. drink size of 14 grams and U.S. low-risk drinking guidelines recommended by the United States Dietary Guidelines and the NIAAA (Higgins-Biddle & Babor, 2018). The USAUDIT further adjusts questions #1 through #3 by expanding the number of responses and modifying the wording of question #3. Questions #4 through #10 are identical to the WHO AUDIT. When comparing the WHO AUDIT and USAUDIT screening results, the authors concluded that when used in the U.S., the USAUDIT provides greater accuracy than the WHO AUDIT, identifying reported drinking above recommended levels with no false positives and only a few false negatives (Higgins-Biddle & Babor, 2018).

Either the U.S. or WHO versions of the AUDIT alcohol screening questionnaires are expressed in each of the following CDS artifacts:

- USAUDIT Alcohol Screening
- WHO AUDIT Alcohol Screening
- NIDA QS to USAUDIT Alcohol Screening

In addition to the USAUDIT, the NIDA QS is also expressed in the third artifact, NIDA QS to USAUDIT Alcohol Screening. The NIDA QS is a validated, brief 4-question screening tool for multiple substances (i.e., alcohol, tobacco, nonmedical use of prescription drugs, and illicit drugs) appropriate for patients age 18 or older (National Institute on Drug Abuse, 2009). It enables clinicians to evaluate the frequency with which patients have used these substances in the past year so further screening can be performed, if indicated. The NIDA QS to USAUDIT Alcohol Screening CDS artifact flows from presenting the patient with the four NIDA QS questions (one of which evaluates the frequency of “heavy drinking” days in the past year) to the full USAUDIT if the patient screens positive for heavy drinking. NIDA defines heavy drinking as having one or more days in the past year when a man had five or more drinks or a woman had four or more drinks (National Institute on Drug Abuse, 2009).

Implementers are encouraged to carefully evaluate the differences in each screening questionnaire, considering which one aligns best with their organizational needs and clinician preference. Section 2.3, ASBI Implementation Resources, includes resources that contain additional information and guidance on implementing the USAUDIT and the WHO AUDIT.

2.1.2 Alcohol Screening Implementation

When implementing alcohol screening as CDS embedded in an EHR or health IT system, it is necessary to determine current health IT capabilities and limitations, and workflow modifications that might be required. The screening CDS can be integrated into clinical workflow in several different ways. Examples include:

- As an electronic questionnaire administered to the patient by clinic staff, such as a medical assistant or nursing professional, with the patient responses entered into the health IT system
- As a patient-facing questionnaire completed electronically by the patient, through either a patient portal, on a tablet or similar device, or even a mobile app

Delivering the screening questionnaire in an electronic format directly to patients can help lower the burden on clinical staff, although these capabilities may not yet be available in most health IT
systems. As the use of health IT and CDS evolves, clinicians no longer need to be the sole target of CDS information and alerts. Engaged patients and their caregivers are increasingly seeking health information to help guide them in their healthcare decisions and better manage their health. Patient-facing, evidence-based CDS may ultimately be one of the most effective methods of improving health outcomes by providing evidence-based information directly to patients and connecting them to resources and tools (Fiks, 2011).

Regardless of how the screening questionnaire is displayed and the responses are captured, the resulting score should be reviewed by a clinician who can offer brief behavioral counseling to the patient based on the screening results, and consider the need to refer the patient to evaluation and treatment if indicated by the results.

2.2 Brief Behavioral Counseling Intervention Implementation Considerations

The USPSTF identified evidence that providing brief behavioral counseling to adults ≥ 18 years of age with positive alcohol screening results reduced excessive drinking. Evidence showed “reductions in alcohol use (by a mean of 1.6 drinks per week) and in the odds of exceeding recommended drinking limits (by 40%) and heavy use episodes (by 33%) at 6 to 12 months of follow-up” (O’Connor et al., 2018). For pregnant women, the use of brief counseling increased the likelihood of maintaining abstinence during their pregnancy (Curry et al., 2018). Consequently, when alcohol screening indicates a patient is drinking above recommended levels, providing a brief intervention is a critical step in lowering their risk.

Tailoring the provision of brief intervention to the organization’s needs and capabilities is critical to the success of ASBI implementation in a healthcare setting. In the step-by-step guide written by Higgins-Biddle et al. (Centers for Disease Control and Prevention, 2014), these considerations include determining the following:

- Who will deliver the intervention, based on time availability, knowledge and experience, and interpersonal skills?
- When will the interventions be delivered? (i.e., during the same visit as the screening or at a follow-up visit)
- How will clinicians be trained on providing brief interventions?
- How will follow-up occur with patients who receive an intervention?
- How will the intervention be documented?
- If a referral for further evaluation and possible treatment is needed, what is the process today for these referrals? For example, how will the patient be guided to accept additional help, to whom should the referral be directed, and how is follow-up with the referring provider handled?

The resources listed in Section 2.3 include detailed guidance to assist your practice in addressing the above implementation questions and other considerations in providing brief interventions. In addition, the Alcohol Brief Intervention and Referral CDS artifact identifies patients screened for alcohol use and provides care recommendations to consider based on the patient’s reported level of drinking, including suggestions for brief counseling interventions and links to targeted patient resources.
education materials and tools. The artifact also suggests and facilitates the referral for the patient to receive diagnostic evaluation and possible treatment of alcohol use disorder, if indicated.

2.3 ASBI Implementation Resources

Numerous evidence-based manuals and resources exist to guide primary care practices in the implementation of alcohol screening and brief intervention for those patients who demonstrate excessive drinking based on their screening. Some of these include the following resources:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sponsor</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Implementing Screening and Brief Intervention for Risky Alcohol Use A Step-by-Step Guide for Primary Care Practices (Centers for Disease Control and Prevention, 2014)</td>
<td>CDC: NCBDDD</td>
<td>This guide is written to help practices plan and adapt ASBI to their unique operations, providing the steps to plan, implement, and continually improve this preventive care service. Additional information on implementing the USAUDIT is also included.</td>
</tr>
<tr>
<td>The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care (Babor, Higgins-Biddle, Saunders, & Monteiro, 2001)</td>
<td>WHO</td>
<td>This manual describes how to use the WHO version of the AUDIT screening tool. It is designed to be used with the WHO manual “Brief Intervention for Hazardous and Harmful Drinking: A Manual for Use in Primary Care” to provide a comprehensive approach to ASBI.</td>
</tr>
<tr>
<td>The Alcohol Use Disorders Identification Test, Adapted for Use in the United States: A Guide for Primary Care Practitioners (Babor, Higgins-Biddle, & Robaina, 2017)</td>
<td>Substance Abuse and Mental Health Services Administration</td>
<td>Based on the U.S. adaption of the Alcohol Use Disorders Identification Test (USAUDIT), this guide provides instruction for the clinical application of the USAUDIT for primary care practices.</td>
</tr>
<tr>
<td>A review of the Alcohol Use Disorders Identification Test (AUDIT), AUDIT-C, and USAUDIT for screening in the United States: Past issues and future directions. (Higgins-Biddle & Babor, 2018)</td>
<td>N/A</td>
<td>This paper describes the WHO version of the AUDIT-C and AUDIT and provides the rationale for development of the USAUDIT, adapted to U.S. standard drink sizes. It provides details on the differences between the WHO and U.S. versions.</td>
</tr>
<tr>
<td>Screening and Behavioral Counseling Interventions to Reduce Unhealthy Alcohol Use in Adolescents and Adults: US Preventive Services Task Recommendation Statement (Curry et al., 2018)</td>
<td>USPSTF</td>
<td>These guidelines provide an update on the original USPSTF 2013 recommendation on screening for unhealthy alcohol use in primary care settings.</td>
</tr>
<tr>
<td>Brief Intervention for Hazardous and Harmful Drinking: A Manual for Use in Primary Care (Babor & Higgins-Biddle, 2001)</td>
<td>WHO</td>
<td>This manual focuses on conducting brief interventions for patients with alcohol use disorders or at risk of developing them and is designed to be used with the WHO manual “The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care.”</td>
</tr>
</tbody>
</table>
3. **Artifact Description and Use**

3.1 **Artifact Description**

The *USAUDIT Alcohol Screening* artifact identifies adults (i.e., individuals 18 years and older) who would benefit from alcohol screening as part of their preventive health care. The artifact prompts alcohol screening on an annual basis, as recommended by the World Health Organization (WHO) (Babor et al., 2001). In addition, the artifact prompts screening during every trimester for pregnant patients to ensure clinicians have an opportunity to stress the importance of abstinence from alcohol throughout pregnancy (American College of Nurse-Midwives, 2017; Wright et al., 2016). Individuals with active alcohol use disorder (AUD) are excluded from this preventive health alcohol screening CDS because additional specialized assessment and treatment beyond a brief intervention is indicated as effective and appropriate as the standard of care for these patients. This decision was informed by the USPSTF *Unhealthy Alcohol Use in Adolescents and Adults: Screening and Behavioral Counseling Interventions* recommendation’s exclusion criteria, as the systematic review population did not include persons with AUDs. ASBI has not been found to be an effective treatment for AUDs (Curry et al., 2018).

This artifact facilitates evidence-based, patient-specific alcohol screening based on the patient’s sex, age, medical history, and response to individual screening questions. The artifact starts by presenting an alcohol prescreen (PS) question to patients for whom screening is indicated, as suggested by the NIAAA, to ensure patients understand that beer and wine are considered alcoholic beverages. The PS question reads: “Do you sometimes drink beer, wine, or other alcoholic beverages?” Use of the alcohol PS question also shortens the time spent on alcohol screening for patients who abstain from alcohol. If the patient responds “Yes” to the PS question, the CDS progresses to display the first three questions of the USAUDIT (i.e., the USAUDIT-C) and calculates a score if the patient responded to all three questions. Patients are presented with the remaining USAUDIT questions (i.e., questions #4 through #10) if their USAUDIT-C score is:
• Greater than or equal to “7” and they are a woman, a man over 65 years of age, or their sex at birth is recorded in the health IT system as Unknown
• Greater than or equal to “8” and they are a man, 65 years of age or younger

See Appendix B for the complete USAUDIT questionnaire.

Finally, the CDS displays the question “Are you currently pregnant or trying to become pregnant?” to women of reproductive age (given no evidence in the patient’s medical record that they are currently pregnant or have had a hysterectomy). The patient’s response to this question is used by the Alcohol Brief Intervention and Referral CDS artifact to ensure a pregnancy-specific intervention is presented to the clinician if indicated.

This artifact does not include care recommendations based on the patient’s alcohol screening results. The CDS Development Team and the CDC sponsors of this work took a modular approach to developing ASBI CDS artifacts to 1) lessen the complexity of each artifact and 2) enable organizations to only integrate portions of logic that they really need (e.g., are not already present in their health IT system). A modular approach allows for personalized implementation choices without the need to edit CDS code. Providing individuals engaged in risky or hazardous drinking with brief behavioral counseling interventions to reduce their alcohol use is an important component of the USPSTF recommendation (Curry et al., 2018). The Alcohol Brief Intervention and Referral and Decision Aid for Your Drinking CDS artifacts mentioned in Section 1.1 are integral “companion” CDS modules to this artifact if a healthcare organization does not have ASBI care recommendations implemented in their health IT system. Potential implementers are encouraged to remind their clinicians to consider the patient's medical condition, family history of alcohol problems and perceived honesty in responding to the AUDIT questions, prior to making care decisions related to the patient's alcohol use (Babor et al. 2001).

The USAUDIT Alcohol Screening artifact aligns with USAUDIT guidelines. The USAUDIT was created to "identify individuals with risky patterns of alcohol consumption, as defined by the U.S. standard drink (14 grams) and recommended drinking limits, and those who may have an alcohol use disorder" (Babor et al., 2017). In comparison, the WHO Alcohol Screening artifact aligns with AUDIT guidance published by WHO, which assumes a standard drink size of 10 grams of alcohol (Babor et al., 2001). As such, responses to questions #1, #2 and #3, and the wording of question #3 vary between each questionnaire, as does the scoring and a few other specifics. Prior to implementing this CDS, it is important to consider which version of the AUDIT is most appropriate for the country where this CDS will be utilized, because the types and amounts of alcoholic drinks will vary according to culture and custom (Babor et al., 2001).

3.2 Health Scenarios Supported by this Artifact

The USAUDIT Alcohol Screening artifact was developed and published to: 1) help healthcare practices and clinicians identify adults who should be screened for alcohol use and 2) deliver a series of screening questions that align with guidance published in USAUDIT: A Guide for Primary Care Practitioners. The artifact supports the following scenarios when implemented in a health IT system in a healthcare setting. Note, each scenario is populated with a fictitious name and health data to provide context to the scenario.
1. **Increasing the rate of alcohol screening through automated identification of individuals who should be screened**

Sam is 35 years old, without pre-existing conditions. He sees his primary care physician infrequently because he travels every Monday through Thursday for work and can “never find the time to take care of things in his personal life.” Sam finally scheduled his annual checkup after receiving an email from his physician’s office that he is overdue for his wellness exam. When the medical assistant in the physician’s office opens Sam’s medical record in the EHR after bringing him into the treatment room, she is presented with a notification that Sam is due for alcohol use screening, because his last screening event occurred 18 months ago. Without this notification, the medical assistant and physician may have overlooked the gap in time between alcohol use screening events, while focusing on other aspects of his checkup.

2. **Reducing clinician burden by enabling patient-facing alcohol use screening**

Commonwealth Physicians Group (CPG) is a medium-size practice in Virginia with six primary care clinicians and approximately 10,000 patients. CPG clinicians have been struggling to remain in compliance with preventive health screening recommendations while also managing their patient population’s health needs including annual wellness exams, acute illnesses, and chronic diseases. After implementing patient-facing alcohol use screening via a hand-held tablet that is integrated with the group’s EHR and providing the tablet to patients during check in at the office, 1) each patient is now routinely screened at the recommended interval, 2) the screening responses and score are routinely captured, and 3) the clinician has more time to care for the patient. This includes providing a brief intervention as indicated, while meeting alcohol screening standards.

3. **Enabling office staff to consistently perform accurate, evidence-based alcohol use screening**

Dr. Martins is the founding physician of Mobile Family Medicine, a primary care group practice located in Mobile, Alabama. He noted inconsistencies in how the medical assistants in his practice perform alcohol use screening (e.g., how they adjust the sequence of the screening questions based on the patient’s medical history, how they calculate the patient’s screening score). The inconsistencies forced him to double check all screening results and at times perform additional screening, which diverted his attention from other concerns he planned to address with the patient. He decided to have his staff members transition from manual, paper-based, AUDIT screening to an electronic version of the screening questionnaire that includes logic to ensure accurate scoring and sequencing of the questions. He realized that this transition would also provide an opportunity to implement the USAUDIT, as opposed to the original version of the AUDIT developed by the WHO which his practice had been using. He felt that the USAUDIT would provide a more accurate assessment of his patient’s alcohol use, because the questions and responses are adjusted to reflect the amount of alcohol in a standard U.S. drink (i.e., 14 grams) versus the 10-gram...
standard used in the international version of the AUDIT (Centers for Disease Control and Prevention, 2014). After transitioning to an electronic version of the USAUDIT, the clinic staff reported 1) having increased confidence in the screening process, and 2) the screening process requiring less time to complete. Dr. Martins had greater trust regarding the accuracy of the screening results, freeing him to focus on other aspects of care (e.g., providing a brief intervention if needed). Dr. Martins and his partners at Mobile Family Medicine were pleased that they could implement this evidence-based, interoperable CDS within their EHR with minimal resources required from a time, money, and IT staffing effort perspective.

3.3 Health Scenarios Supported With Customization of the Coded Expression

This coded CDS expression defines clinical concepts and criteria informed by references listed in Section 4.1. The artifact identifies patients who require alcohol use screening and delivers an evidence-based sequence of questions to perform the screening. Portions of the coded CDS expression can be reused to support additional scenarios that drive preventive health efforts across varied organizations, workflows, end users, and health IT systems.

Additional preventive health scenarios that could be supported by enhancing or adjusting portions of this CDS logic include:

1. Identifying care gaps as part of a quality improvement project to enhance population health

Premier Alliance is an accountable care organization comprised of 250 primary care clinicians that care for 15,000 Medicare beneficiaries. The Quality Improvement department at Premier discovered their organization had very low scores on a Healthcare Effectiveness Data and Information Set (HEDIS) quality measure that evaluates the frequency that their physicians screen adults for alcohol use using a standardized tool, and provide brief counseling interventions or other follow-up care to patients who are “misusing alcohol” (e.g., have a WHO AUDIT score of greater than or equal to 8) (National Committee for Quality Assurance, n.d.). Department leaders run a report using the inclusion and exclusion logic in the first “step” of this artifact on a monthly basis, and each primary care clinician receives a report profiling those overdue for alcohol use screening in their patient panel. Staff members reach out to every patient on the list to schedule an appointment with their primary care clinician. Data regarding the number of appointments scheduled as a result of the outreach, as well as the number of individuals who received overdue screening, is collected and analyzed on an ongoing basis to determine the impact of the outreach. In parallel, the primary care clinicians were provided with brief intervention training, so they have the knowledge to deliver brief interventions, when indicated. Premier Alliance also established a recognition system to acknowledge clinicians who improved their screening rates which positively impacted the organization’s HEDIS score.
2. Identifying and mitigating patient safety issues

A group of CPG clinicians initiated a project to identify potential patient safety issues in patients identified as drinking at or below recommended levels. Examples included patients who were taking depression and/or anxiety medications reporting drowsiness, dizziness, and memory problems, at medical checkups. The CPG clinicians realized that for some patients, even drinking below established thresholds for excessive alcohol intake may be too much if the patient is receiving certain medications (e.g., Ativan®, Cymbalta®) or have medical conditions that may be worsened by alcohol (e.g., liver disease, pancreatitis) (Centers for Disease Control and Prevention, 2014). To reduce the cognitive burden of having to remember which medications interact with alcohol and which medical conditions may be worsened by alcohol, the clinicians engaged with the health IT team that maintains CPG’s EHR to create an algorithm that notifies a clinician of a safety concern if the patient reports drinking alcohol. The clinicians and health IT team utilized clinical definitions for “pregnancy,” “AUD,” and “alcohol screening” expressed in this artifact’s coded logic and created additional clinical definitions for concepts such as “liver disease” and “anti-depressant medications” to construct the algorithm. Now if a patient reports any level of alcohol intake during alcohol screening and the patient has evidence of specific medications or conditions in their record (e.g., they are pregnant), the algorithm notifies the clinician of a potential safety concern. The clinician can then counsel the patient on the importance of reducing or eliminating their alcohol intake, and if the patient is unable to achieve a reduction, the clinician can adjust the patient’s plan of care to mitigate the safety concern.

3. Expanding preventive health screening to include evaluation of substances other than alcohol

Having experienced favorable results after implementing patient-facing alcohol screening delivered as CDS via his practice’s EHR, Dr. Martins sought to integrate screening for use of other substances (such as tobacco products and illegal drugs), with the existing USAUDIT Alcohol Screening logic to provide a more comprehensive assessment of his patient’s substance use. Dr. Martins selected the NIDA-Modified ASSIST screening questionnaire, which screens patients for their use of tobacco, illicit and illegal drugs, and prescription drugs used for non-medical purposes, along with alcohol. The NIDA-Modified ASSIST only includes one alcohol screening question (i.e., “In the past year, how often have you had 4 or more drinks a day [for men over 65 years and all women] or 5 or more drinks a day [for men 65 years and under]”) (National Institute on Drug Abuse, 2009), which does not provide a full assessment of a patient’s alcohol use. Therefore, Dr. Martins requests that his practice’s IT team implement the NIDA-Modified ASSIST so that if the patient responds anything other than “Never” to the alcohol screening question in the NIDA-Modified ASSIST, the patient will then be presented with the full USAUDIT to further evaluate their alcohol use. This decision was informed by the USPSTF Screening and Behavioral Counseling Interventions to Reduce Unhealthy Alcohol Use in Adolescents and Adults recommendation.
(i.e., “when patients screen positive on a brief screening instrument [e.g., the SASQ or the AUDIT-C], clinicians should ensure follow-up with a more in-depth risk assessment to confirm unhealthy alcohol use and determine the next steps of care...[e.g., AUDIT]” (Curry et al., 2018). As such, his practice’s IT team adjusted the code in the existing USAUDIT Alcohol Screening artifact to align with this evidence. The electronic delivery of this substance use questionnaire further improved the quality of care and reduced the burden on Dr. Martin and his staff, and he is considering expanding patient-facing preventive health screening in his EHR to include depression screening.

3.4 CDS Logic Descriptions and Recommended Actions

The human-readable logic that enables the flow of alcohol screening questions and the scoring of patient responses is listed in detail in the Artifact Semistructured Logic section of 0The logic is divided into “steps” to make the objective of specific portions of logic criteria and the resulting CDS “interventions” and “suggested actions” more understandable.

At a very high level, the following information provides insight into the logic and CDS interventions and actions that this artifact supports.

Step 1: Consider if Alcohol Screening Should be Initiated (i.e., if the Alcohol PS Question Should be Displayed)

- **Logic Description:** Ensures that the patient is 18 years or older, they do not have active AUD, and there is no evidence of alcohol screening in the past 12 months if the patient is not pregnant, or no evidence of alcohol screening in the past three months if the patient is pregnant (Note: This logic is included in all subsequent logic “steps” but is not repeated in the descriptions below.)

- **CDS Actions:** Introduce the purpose of alcohol use screening, display the alcohol PS question and the standard drink size graphic, record and display the patient’s response to the PS question

Step 2: Consider if USAUDIT-C Screening is Indicated

- **Logic Description:** Ensures that the patient responded “Yes” to the alcohol PS question

- **CDS Actions:** Display the USAUDIT-C screening instructions and standard drink size graphic, display question #1 of the USAUDIT-C, and record and display the patient’s response to question #1

Step 3: Consider Administering Question #2 and Question #3 of the USAUDIT-C

- **Logic Description:** Ensures that the patient responded “Yes” to the alcohol PS question and they did not respond “Never” to question #1 of the USAUDIT-C

- **CDS Actions:** Continue to display the screening instructions and standard drink size graphic, display question #2 and question #3 with the appropriate quantity of drinks populated in question #3 based on the patient’s sex and age, record and display the
patient’s responses, calculate the USAUDIT-C score, record and display the USAUDIT-C score

Step 4: Consider if Additional Screening is Indicated

- Presenting the remaining USAUDIT questions (questions #4 - #10)

 o Logic Description: Ensures that 1) a woman, man over 65 years old or individual whose sex at birth is recorded as Unknown in the EHR scored greater than or equal to “7” on the USAUDIT-C, or 2) a man 65 years old or younger scored greater than or equal to “8” on the USAUDIT-C

 o CDS Interventions and Suggested Actions: Display question #4 through question #10 of the USAUDIT, record and display the patient’s responses, calculate the USAUDIT score, and record and display the score

- Presenting question #9 and question #10 after the USAUDIT-C

 o Logic Description: Ensures that the patient has a past history of AUD (i.e., AUD that is not currently active) and they are 1) a woman, man over 65 years old or individual whose sex at birth is recorded as Unknown in the EHR and they scored less than “7” on the USAUDIT-C, or 2) a man 65 years old or younger who scored less than “8” on the USAUDIT-C

 o CDS Actions: Display question #9 and question #10 of the USAUDIT, record and display the patient’s responses

Step 5: Consider if the Patient is Pregnant or Trying to Become Pregnant

- Logic Description: Ensures that the woman is 18 years or older and less than 50 years old and there is no evidence of an active pregnancy or a hysterectomy in her medical record

- CDS Actions: Display the question, “Are you currently pregnant or trying to become pregnant?”, record and display the patient’s response

4. Guideline Interpretation and Clinical Decisions

4.1 Evidence-based Sources for Artifact Development

This artifact is not directly derived from any one clinical guideline. It draws upon multiple evidence-based references that provide guidance to organizations and clinical professionals on how to conduct alcohol screening and provide brief interventions based on the screening result. The primary guidance comes from the following resources:

4.2 Guideline Translation Summary

Throughout the development of this artifact, the CDS Development Team collaborated with CDC subject matter experts (SMEs) to interpret and clarify recommendations within each clinical guideline to: 1) ensure the evidence was translated appropriately, 2) clarify any guidance found in the evidence-based resources that was unclear, and 3) arrive at a representation of the guideline that is specific enough to be suitable for computation. The Decision Log (in Appendix A.4) provides detailed information on how the evidence-based guidelines and subsequent SME clarifications informed CDS development. Some of the key interpretations and decisions include:

1. Screening adults only
 a. The USAUDIT-C/USAUDIT identifies (in part) individuals drinking in excess of recommended levels for healthy adults (Babor et al., 2017). Adults are individuals 18 years and older. Other screening tools such as CRAFFT (i.e., Car, Relax, Alone, Forget, Friends, Trouble) are validated screening instruments for adolescents (i.e., individuals under 18 years of age) (Centers for Disease Control and Prevention, 2014).

2. Ensuring pregnant women receive appropriate alcohol screening
 a. Professional organizations and government entities (e.g., American College of Obstetricians and Gynecologists [ACOG], USPSTF, WHO) provide varied recommendations on how often alcohol screening should be performed during pregnancy. The CDS Development Team and CDC sponsors of this project elected to enable screening in every trimester, to ensure clinicians have an opportunity to evaluate alcohol intake and reinforce the importance of abstinence several times during pregnancy (Wright et al., 2016). Some pregnant women may believe it is safe to drink in the second or third trimester, and alcohol screening later in pregnancy provides an opportunity to educate these women and stress the importance of abstinence.
3. **Defining historical alcohol screening results that satisfy the CDS logic, to determine if a patient has previously completed alcohol screening within the defined parameters.**

 a. This artifact prompts alcohol screening of individuals 18 years and older who do not have active AUD and have not completed alcohol screening within 1) the past 12 months if they are not pregnant or 2) the past three months if they are pregnant. For the CDS logic to know what constitutes “alcohol screening,” the CDS Development Team and CDC SMEs needed to define the screening instruments that would be accepted as evidence that alcohol screening had occurred in the past. “There are many screening instruments readily available, but most do not focus directly on how much patients are drinking” (Centers for Disease Control and Prevention, 2014). Furthermore, some screening instruments only evaluate binge drinking or only evaluate social problems related to alcohol use. Thus, we opted to deliver USAUDIT screening (which is sensitive to a broad spectrum of drinking problems, including alcohol consumption, alcohol-related harm, and dependence symptoms) to all individuals who have not recently been evaluated with an alcohol screening questionnaire that detects the full spectrum of alcohol use. As such, the CDS recognizes the following alcohol screening results as meeting the “preferred” level of alcohol use assessment (i.e., if the patient has evidence of any of the following completed assessments within the designated timeframe, the CDS will not recommend alcohol screening for the patient):

 i. A WHO AUDIT-C or WHO AUDIT score

 ii. A USAUDIT-C or USAUDIT score

 iii. An alcohol PS question response of “No” (where the alcohol PS question is, “Do you sometimes drink beer, wine, or other alcoholic beverages?”)

 1. Note: Organizations that have implemented the NIDA-Modified ASSIST in their health IT system, which contains an alcohol PS question (i.e., In your lifetime have you ever used alcoholic beverages?), can map a “No” response to the NIDA-Modified ASSIST alcohol PS question to the alcohol PS question response expressed in this artifact.

 iv. An alcohol PS question response of “Yes” AND an AUDIT question #1 response of “Never” (which means that the patient has had an alcoholic beverage in their lifetime, but they have not had an alcoholic beverage in the past 12 months)

 b. Healthcare organizations that decide to implement this artifact in their health IT system can opt to edit the CQL code to include results generated from additional validated screening questionnaires (i.e., Cut down, Annoyed, Guilty, Eye-opener [CAGE]; Alcohol, Smoking and Substance Involvement Screening Test [ASSIST]; Tolerance, Worried, Eye-Opener, Amnesia, Cut-Down [TWEAK]; Tolerance, Annoyed, Cut-down, Eye-Opener [T-ACE]; Pregnancy, Past, Partner, Parents [4P’s]) based on organizational policy, state reporting requirements, and clinician preference. However, they are strongly encouraged to only do so for the first year after implementing this CDS, so the CDS can consider historical screening results stored in
their system. The CAGE questionnaire has been shown to have low sensitivity for pregnant women (Moyer, 2013), and the CAGE, TWEAK, and T-ACE are typically used to assess alcohol dependence, as opposed to the full spectrum of alcohol use. For this reason, once this artifact has been in use for one year, screening results outside the ones listed in “3a” above should no longer be used.

c. Healthcare organizations that have implemented brief screening questionnaires (e.g., the SASQ) or multi-substance screening questionnaires that do not broadly evaluate numerous aspects of a patient’s alcohol use (e.g., the NIDA QS, the NIDA-Modified ASSIST) as “stand alone” alcohol screening questionnaires are encouraged to consider implementing either version of the full AUDIT in their health IT system, to further evaluate the full spectrum of a patient’s alcohol use if the patient screens positive on one of the aforementioned questionnaires. Integration of this USAUDIT Alcohol Screening artifact or the WHO AUDIT Alcohol Screening artifact with a brief alcohol screening assessment can provide additional, valuable insight into the patient’s alcohol intake, which in turn can inform more appropriate patient-centered brief interventions and care.

4. Ensuring individuals whose sex at birth is recorded as “unknown” in an EHR receive alcohol screening

a. Unknown is a valid response for an individual’s “sex assigned at birth” by Health Level 7® (HL7®) standards outlined in the Interoperability Standards Advisory published by the Office of the National Coordinator for Health Information Technology (ONC) (The Office of the National Coordinator for Health Information Technology, n.d.). Because question #3 and the scoring criteria in the USAUDIT are sex-specific, the CDS Development Team and CDC SMEs strived to ensure that this CDS representation would accommodate all valid responses (i.e., Male, Female, or Unknown) to “sex assigned at birth” (Logical Observation Identifiers Names and Codes [LOINC] code “76689-9”) so that all individuals would be screened for excessive alcohol consumption. To err on the side of potentially overestimating the patient’s risk (as opposed to underestimating risk), the CDS presents individuals whose sex at birth is Unknown with “4 drinks a day” populated in question #3 (as opposed to “5 drinks a day,” which is the higher threshold). This aligns with how the question is presented to Female patients. The CDS also defines a positive USAUDIT-C score as greater than or equal to “7” for individuals with Unknown as their sex at birth (as opposed to greater than or equal to “8,” which is the higher threshold).

5. Delivering a “pregnancy question” at the end of alcohol screening to specific women

a. Abstinence from alcohol is tremendously important when a woman is pregnant or trying to become pregnant (Centers for Disease Control and Prevention, 2014) (Wright et al., 2016). Although CDS specifications can evaluate data in a woman’s medical record for evidence of a current pregnancy or a hysterectomy (which eliminates a woman’s ability to get pregnant), this information does not represent a full picture of a woman’s pregnancy status. For example:

i. A woman may have taken a home pregnancy test that was positive, but she has not had her first prenatal visit yet, therefore a diagnosis of pregnancy is not present in her medical record.
ii. A woman may be trying to become pregnant but, if this information is present in a patient’s record at all, it is usually captured as free text, therefore the CDS code cannot reason over it.

For these reasons, the CDS Development Team and CDC SMEs elected to present adult women of reproductive age (18-49 years old), without evidence of a current pregnancy or hysterectomy in their medical record, with the following question after alcohol screening has concluded: “Are you pregnant or trying to become pregnant?”. The CDS records the response to this question to inform complementary CDS logic that presents ASBI care recommendations to the clinician, based on the patient’s age, sex, medical history, pregnancy status, screening score, and other factors (e.g., logic in the Alcohol Brief Intervention and Referral CDS artifact).

5. Technical Details

This section provides the technical details regarding the definition and implementation of the ASBI CDS artifact. The underlying standards used to define the artifact are first listed and discussed. Then, the structure of the artifact definition is described. Finally, implementation considerations are provided as a prelude to the testing discussion in the next section.

5.1 Artifact Definition Standards

A number of health IT standards are used to define the ASBI CDS artifact. These standards are introduced in the following sections, alongside rationale for why they have been selected for use as the technical foundation of the ASBI CDS definition.

5.1.1 Fast Healthcare Interoperability Resources®

Fast Healthcare Interoperability Resources (FHIR®) is an international IT standard for exchanging healthcare information electronically (Health Level 7 (HL7), n.d.-j). FHIR provides a number of general data structures or “resources” for representing a variety of clinical and healthcare-related data (Health Level 7 (HL7), n.d.-o). Example resources include Condition (Health Level 7 (HL7), n.d.-e) and Observation (Health Level 7 (HL7), n.d.-i), which can respectively be used to represent clinical diagnoses and laboratory test results (among other things). The ASBI CDS uses FHIR Release 4 to not just model information about the patient to whom the CDS is being applied but also to describe the questions, responses, and logic that constitute the alcohol screening instrument being defined.

FHIR provides a Questionnaire resource that allows interrelated questions and responses to be defined in a standard format (Health Level 7 (HL7), n.d.-m). Each Questionnaire instance is defined by a set of both required and optional data elements, which are by design general in nature, to support the capabilities most likely to be found in the majority of healthcare systems (Health Level 7 (HL7), n.d.-l). This flexibility is one of the reasons why FHIR has been growing in popularity; the use of FHIR is expected to continue to grow, due to it being the basis for the application programming interface (API) required by the 21st Century Cures Act Interoperability Final Rule (Office of the National Coordinator (ONC), 2020). For these reasons, FHIR has been selected for use in the ASBI CDS definition. As further described in Section 5.2.2, the questions
and available responses of the alcohol screening instrument are represented using a FHIR Questionnaire resource.

5.1.2 Clinical Reasoning Module

The Clinical Reasoning Module (CRM) is a subset of the FHIR standard; it provides resources and operations for representing and distributing clinical knowledge artifacts such as CDS (Health Level 7 (HL7), n.d.-d). The structure of the ASBI CDS artifact described in this document is based upon the guidance provided by CRM for designing and building CDS. PlanDefinition (Health Level 7 (HL7), n.d.-k) is a key resource from CRM and, as described in Section 5.2.1, is used as one of the three main components of the ASBI CDS artifact definition. Guidance from the FHIR Clinical Guidelines implementation guide (IG) (Health Level 7 (HL7), n.d.-g), also known as “Clinical Practice Guidelines (CPG) on FHIR,” has been incorporated into the ASBI CDS PlanDefinition resource.

5.1.3 Structured Data Capture

Structured Data Capture (SDC) (Health Level 7 (HL7), n.d.-p) is another FHIR IG that has been leveraged to help define the ASBI CDS. SDC provides guidance on how questionnaires, surveys, and forms should be represented in an open and interoperable way. Specifically, it builds upon the base FHIR Questionnaire resource so that more complex use cases can be supported. Features described in SDC and used in the ASBI CDS include advanced form rendering (Health Level 7 (HL7), n.d.-b) and advanced form behavior logic (Health Level 7 (HL7), n.d.-a). While a simplified version of the alcohol screening instrument could be described using only a base FHIR Questionnaire resource, SDC is required for expressing the complete instrument.

5.1.4 Clinical Quality Language

CQL is a domain-specific computer programming language focused on the expression of clinical quality concepts (Health Level 7 (HL7), n.d.-c). It can be used to author CDS logic and is designed to easily integrate with the other standards described in this section. That latter fact constitutes one of CQL’s advantages over other more general-purpose programming languages when it comes to authoring CDS logic. An additional advantage is that CDS logical expressions written in CQL tend to read more like natural language than as a computer program, making them more accessible to audiences outside the realm of software engineering.

The ASBI CDS requires logic that can be expressed naturally and efficiently using CQL. Computer code written in CQL is human readable but can be translated or “compiled” into a more structured format that is interpretable by computers. This computer-friendly format is called the Expression Logical Model (ELM), and it is this format of the logic that is interpreted when the CDS logic is executed against patient data. Both formats have been produced as part of the ASBI CDS development.

5.2 Artifact Definition Structure

This section describes the main components of the ASBI CDS, how they are based on the standards described in the previous section, and how together they compose the complete artifact definition. The three main components of the ASBI CDS can be seen in Figure 1 and are:
PlanDefinition (“the container”), Questionnaire (“the questions and available responses”), and Library (“the logic”).

Figure 1 shows the Questionnaire and Library components “inside” the PlanDefinition component; this depiction is meant to reflect the fact that the PlanDefinition serves as a wrapper and “contains” the other two components. As discussed in the following sections, each component serves a specific purpose and is equally important; the ASBI CDS could not be fully expressed without all three components.

5.2.1 PlanDefinition

The FHIR standard provides a PlanDefinition resource (Health Level 7 (HL7), n.d.-k) for describing pre-defined groups of actions that should occur under certain circumstances. The PlanDefinition resource provides the key data elements needed to describe the overall CDS behavior in a structured and standard way. The details of the CDS are not listed directly in the PlanDefinition; it simply references the other two components where those details can be found. The PlanDefinition for the ASBI CDS is shown below in Figure 2, where it has been expressed in compact notation using the draft FHIR Shorthand (FSH) standard (Health Level 7 (HL7), n.d.-h).

The PlanDefinition shown in Figure 2 contains metadata regarding the ASBI CDS. Of most interest are the lines starting with * library and * action. The former is simply a reference to the CQL Library component. The latter is a more complicated structure that describes how the CDS should be triggered (i.e., at the start of an encounter), under what conditions it is applicable (determined by the ApplyScreeingInstrument expression from the CQL Library), and what action should be taken (i.e., present the USAUDIT Questionnaire). The trigger is the name of a CDS Hook called encounter-start (Health Level 7 (HL7) & Boston Children’s Hospital, n.d.); CDS Hooks is covered in Section 5.3.2 as part of the implementation discussion. The action and conditions are described in detail by the Questionnaire and Library components, respectively.
As discussed in Section 5.1.1, the FHIR standard provides a Questionnaire resource for describing healthcare-related surveys, questionnaires, and forms. Section 5.1.3 discussed how the SDC IG provides additional guidance on how Questionnaire can be used in more complex use cases. A FHIR Questionnaire is used to specify the questions and available responses for each of the screening instruments that make up the ASBI CDS. These include the USAUDIT, the alcohol prescreen question, and the pregnancy question. The ASBI CDS Questionnaire defines the ordering of the questions and specifies under what conditions each question appears. An excerpt of the ASBI CDS Questionnaire is shown in Figure 3.
Figure 3 shows the portion of the Questionnaire that defines Question #1 of the USAUDIT. The excerpt is written compactly using FSH and demonstrates how a question in the Questionnaire can be defined by a unique identifier called a linkId, a set of conditions that specify when the question is “enabled,” the actual text of the question, and a set of answerOptions that define the possible responses. From the excerpt it can be seen that the score for each response to Question #1 is encoded using the ordinalValue FHIR extension (Health Level 7 (HL7), n.d.-f).

FHIR provides a basic grammar for expressing simple conditions and constraints on each question in a Questionnaire. SDC also provides a mechanism to reference more complex logical expressions defined in an external Library. In the case of the ASBI CDS, an external CQL Library (see next section) contains the logical expressions necessary for specifying most of the complex behavior of the Questionnaire. An example of a complex logical expression is the
calculation of the scores for both the USAUDIT-C and USAUDIT, which requires reading the current responses to the Questionnaire, looking up the scores for each individual response, and then combining scores across questions. A list of the complex expressions used by the ASBI CDS Questionnaire is shown below in Table 2.

Table 2. List of logical expressions defined in the CQL Library and referenced in the Questionnaire

<table>
<thead>
<tr>
<th>Expression Name</th>
<th>Expression Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DisplayScoreUsAuditC</td>
<td>Boolean (true/false)</td>
<td>Should the USAUDIT-C score be displayed to the user?</td>
</tr>
<tr>
<td>ScoreUsAuditC</td>
<td>Numeric</td>
<td>USAUDIT-C score (sum of Questions #1-#3)</td>
</tr>
<tr>
<td>DisplayUsAuditQuestions4to8</td>
<td>Boolean (true/false)</td>
<td>Should Questions #4-#8 of the USAUDIT be displayed to the user?</td>
</tr>
<tr>
<td>DisplayUsAuditQuestions9and10</td>
<td>Boolean (true/false)</td>
<td>Should Questions #9 and #10 of the USAUDIT be displayed to the user?</td>
</tr>
<tr>
<td>DisplayScoreFullUsAudit</td>
<td>Boolean (true/false)</td>
<td>Should the USAUDIT score be displayed to the user?</td>
</tr>
<tr>
<td>ScoreFullUsAudit</td>
<td>Numeric</td>
<td>USAUDIT score (sum of Questions #1-#10)</td>
</tr>
<tr>
<td>DisplayPregnancyQuestion</td>
<td>Boolean (true/false)</td>
<td>Should the pregnancy question be displayed to the user?</td>
</tr>
</tbody>
</table>

5.2.3 Library

The FHIR standard provides a Library resource (Health Level 7 (HL7), n.d.-n) that acts as a descriptive wrapper around a logic library. In the case of the CDS described in this document, a Library resource is used to wrap logic written in CQL. As described in Section 5.1.4, CQL logical expressions can be interpreted in the context of a single patient EHR formatted in FHIR. The concept of operations for the ASBI CDS is that FHIR resources pulled from the patient record are provided to the executing CQL, alongside responses the patient has made to questions from the Questionnaire described in Section 5.2.2. The CQL uses both sets of information as input data to the logical expressions, whose values are then passed back to the Questionnaire where they are used to determine the correct CDS behavior for the patient.

In addition to the expressions listed in Table 2, a number of intermediate expressions are evaluated within the CQL but not returned to the Questionnaire. Both sets of expressions are necessary for the CQL to provide the required functionality. An example CQL expression from the Library is shown in Figure 4. From the example we can see the expression DisplayPregnancyQuestion being defined using a combination of patient data (e.g., FemaleAtBirth) and information about their responses to the Questionnaire (e.g., AnsweredQuestionsOneThroughThree). DisplayPregnancyQuestion returns true if the patient’s sex at birth is female, there are no indications of a current pregnancy or of a past hysterectomy,
the patient age is between 18 and up to but not including 50 years, and one of the following three situations is true:

1. The patient has answered Questions #1 through #3 of the USAUDIT and does not qualify for Questions #4 through #10.
2. The patient has answered Questions #1 through #3, does not qualify for Questions #4 through #8, and has answered Questions #9 and #10.
3. The patient has answered all ten questions of the USAUDIT.

Figure 4. An excerpt from the CQL logic within the Library

5.3 Artifact Implementation Standards

The CDS artifact definition described above details what, according to the underlying evidence, should be done under certain circumstances. The artifact definition does not necessarily describe how those actions should be implemented in an actual health IT system. This section describes the interoperable health IT standards used to provide guidance for how the ASBI CDS can be implemented and integrated.

5.3.1 Sustainable Medical Applications, Reusable Technologies

The Sustainable Medical Applications, Reusable Technologies (SMART®) standard facilitates the integration of software applications, or “apps,” with health IT systems (Boston Children’s Hospital, n.d.). “SMART on FHIR apps,” or sometimes simply “SMART apps,” are software applications that securely interact with patient EHRs and other healthcare-related data via a FHIR API. SMART apps are interoperable in the sense that they can interface with any health IT system that supports the SMART standard and the data requirements of the app. Instead of writing a different software application to provide the same capability for each different health IT system, a single application can be written that works with many different health IT systems. The ASBI CDS concept of operation requires secure access to an EHR, to provide the capabilities described in the previous section; the SMART standard fulfills that need.
A key component of SMART has been documented in the SMART App Launch IG (Health Level 7 & Boston Children’s Hospital, n.d.-c). It is the sequence of steps taken so that an app can be authenticated and authorized by a health IT system before any FHIR resources are accessed. This SMART App Launch Framework helps to ensure that a particular SMART app is only granted access to the EHR data that it needs and that its user is authorized to access. The ASBI CDS design presupposes that SMART will be available in the system to which it is to be integrated. Without SMART, a custom interface would have to be designed for each health IT system, which defeats the intent and benefit of interoperable CDS.

5.3.2 CDS Hooks

The CDS Hooks standard describes how CDS services, which are simply software that provide CDS, can be integrated with health IT systems (Health Level 7 & Boston Children’s Hospital, n.d.-b). While SMART is more general in nature, CDS Hooks focuses on integrating CDS into the clinician workflow. This is accomplished through the use of a number of so-called “hooks,” which is a software term for a technique for altering the behavior of a software program (Wikipedia, n.d.-a). Essentially, CDS Hooks provides a standardized way of specifying where in the clinician workflow a CDS service should be used, as well as how results from the service should be formatted for communication back to the health IT system.

The ASBI CDS design assumes that the encounter-start hook (Health Level 7 (HL7) & Boston Children’s Hospital, n.d.) will be used as the initial trigger for the CDS; recall the discussion on triggering in Section 5.2.1. How the triggering of the CDS actually occurs is an implementation detail that will be specific to the type of health IT system to which the ASBI CDS is being integrated. CDS Hooks only provides the standard that describes when the CDS should be triggered and what information is passed back and forth between the health IT system and the CDS service. Without CDS Hooks, there could be a different interface between a CDS service and each health IT system, which defeats the intent and benefit of interoperable CDS.

5.4 Artifact Implementation Structure

This section describes how the standards from Section 5.3 can be used to integrate the ASBI CDS into a health IT system. A notional depiction of this is shown in Figure 5. The figure shows a patient and/or clinician interacting with a hypothetical health IT system via a human interface (a computing device of some sort). The human interface provides access to the EHR through a proprietary computer called a server, which in this case is proprietary because it is not using open standards for communication of patient health information. In the notional scenario depicted in Figure 5, interoperability has been added to the health IT system through the inclusion of a FHIR Server, which allows patient health information in the EHR to be accessed as FHIR resources. Additionally, SMART and CDS Hooks interfaces are available so that SMART apps and CDS services can be integrated with less effort.
Figure 5 also shows the ASBI CDS definition being integrated into the health IT system via two mechanisms. First, the PlanDefinition is included in a CDS Hooks service called the CDS Launcher, which is responsible for triggering the ASBI CDS. Second, the Questionnaire and CQL Library are included in a SMART on FHIR App. The SMART on FHIR App is responsible for rendering the alcohol screening questions for display on the human interface, executing CQL logic, and capturing the patient responses for processing and storage in the EHR. These three main integration components - the FHIR Server, the CDS Launcher, and the SMART on FHIR App - are described in more detail in the following sections.

5.4.1 FHIR Server

The FHIR Server interfaces with the health IT system and provides access to a patient’s health information in the EHR. This is accomplished through the use of an API that follows the Representational State Transfer (REST) software architectural pattern, which is frequently referred to as a “RESTful” API (Wikipedia, n.d.-c). The FHIR standard defines the general guidelines and options for this RESTful API (Health Level 7, n.d.-d) and the recent final rule from HHS on interoperability and information blocking provides more specific requirements for certified health IT systems (Office of the National Coordinator (ONC), 2020). The ASBI CDS design assumes that any health IT system into which it will be integrated has a FHIR Server accessible through a RESTful API. Table 3 lists the basic requirements for the FHIR Server and its RESTful API capabilities. It should be noted that certified health IT systems are only required to support read and search operations (Office of the National Coordinator (ONC), 2020); the ASBI CDS additionally requires create operation support so that the results from the alcohol screening can be documented in the EHR.
Table 3. Required FHIR Server capabilities

<table>
<thead>
<tr>
<th>FHIR Resource</th>
<th>Supported Operation(s) (Health Level 7, n.d.-d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition</td>
<td>Read, search</td>
</tr>
<tr>
<td>Observation</td>
<td>Read, search, create</td>
</tr>
<tr>
<td>Procedure</td>
<td>Read, search, create</td>
</tr>
<tr>
<td>Questionnaire</td>
<td>Read, search</td>
</tr>
<tr>
<td>QuestionnaireResponse</td>
<td>Read, search, create</td>
</tr>
</tbody>
</table>

5.4.2 CDS Launcher

The CDS Launcher is a CDS Hooks service that specifies the trigger necessary for launching the CDS. As described in Section 5.3.2, the ASBI CDS should be triggered at the start of a patient encounter. When this occurs, the CDS Launcher is consulted to determine whether the patient meets the inclusion and does not meet the exclusion criteria of the ASBI CDS. Determination of ASBI CDS applicability is made by executing CQL logical expressions against the patient record. If the results of the CQL expressions indicate the patient should receive an alcohol screening, then a [CDS Hooks “card”](Health Level 7 & Boston Children’s Hospital, n.d.-a) is returned to the health IT system, with a link to the SMART on FHIR App. If the results of the CQL expressions indicate the patient should not receive an alcohol screening, no further actions are taken.

5.4.3 SMART on FHIR App

The SMART on FHIR App is used to implement most of the ASBI CDS definition. As seen in Figure 5, there are two main components to the SMART on FHIR App. The first is a software program called an “engine,” whose role it is to execute the CQL expressions defined in the Library. This is done in the context of both patient data accessed via SMART and the FHIR API, as well as with the patient responses to the Questionnaire. The second main component is a software program that takes the questions defined in the Questionnaire and presents them to the user via the human interface; any responses the patient and/or clinician makes are captured and sent to the CQL execution engine.

The SMART on FHIR App is launched after the CDS Launcher has determined the patient should receive an alcohol screening and has returned a link to the App. There are a number of different contexts (e.g., a specific patient or encounter) in which a SMART on FHIR App can be launched (Health Level 7, n.d.-e), and it is up to the implementor to decide which one is best supported by their health IT system. Once screening is completed, the SMART on FHIR App must return the results of the screening to the FHIR Server for storage in the EHR.
6. Artifact Testing

It is not sufficient to simply define and implement a CDS artifact. The definition and implementation must also be thoroughly tested to ensure the CDS behaves as the underlying evidence intends. Because of the complexity of the ASBI CDS, a significant amount of testing software has been developed, and this section discusses the testing that has been applied to the ASBI CDS artifact.

This section first presents the different levels of testing that have been applied during the validation of the ASBI CDS. The most rigorous level of testing involves exercising all aspects of the ASBI CDS in an integrated and end-to-end fashion. This has required development of special testing software, called a test harness, which is described in Section 6.2. As the test harness is described, comparisons are drawn between it and the implementation structure from Section 5.4. These similarities are not by chance, because the test harness is meant to mimic, or “mock,” the key aspects of a real CDS integration. This section concludes with an enumeration of the technology components of the testing harness.

6.1 Levels of Testing

A number of different types, or “levels,” of testing have been applied to the ASBI CDS. Each level of testing focuses on a different aspect of the ASBI CDS as well as on a different granularity or scale of functionality. This section provides a description of each level of testing as well as some sample testing results. Complete testing results can be found in a set of separate test files included with the artifact definitions on CDS Connect.

6.1.1 Format Validation

The simplest level of testing, called Format Validation, focuses on ensuring the ASBI CDS definitions correctly adhere to the underlying health IT standards. Because two main standards are used to define the ASBI CDS, two types of Format Validation must occur; these are next described in turn.

6.1.1.1 FHIR

As described in Section 5.2, three different FHIR resources are necessary to define the ASBI CDS: PlanDefinition, Questionnaire, and Library. These resources are written using FSH and then converted to full FHIR resources using the SUSHI tool (SUSHI is a recursive acronym that stands for “SUSHI Unshortens ShortHand Inputs”) (Health Level 7, n.d.-f). SUSHI does provide some validation during the conversion process, which is followed by passing each generated resource through the official FHIR Validator tool (Health Level 7, n.d.-g).

The FHIR Validator is a software program written in the Java programming language. It is capable of checking FHIR resource instances to ensure they adhere to the FHIR specification. The FHIR Validator can identify errors such as misspelled element names, missing elements, or value formatting issues. Because FHIR is such a complex and extensible specification, validation of the ASBI CDS definitional resources is a key first step for testing. A set of test files are packaged with the CDS definition files published with this document on CDS Connect. The test files include FHIR Validator outputs for all resources used in the CDS definitions.
6.1.1.2 CQL

As described in Section 5.2.3, most of the complex behavior of the ASBI CDS is defined by logical expressions written in CQL. Also recall from Section 5.1.4 that the human readable version of CQL must be converted or translated to the machine friendly format (i.e., ELM) before it can be used in an executable CDS. The CQL-to-ELM Translator Reference Implementation is an open source software package written in the Java programming language (Health Level 7, n.d.-a). It has been used to translate the ASBI CDS CQL, which as a by-product checks the CQL for conformance to the CQL specification. As with FHIR Format Validation, this process checks to make sure what has been written is, from a software standpoint, “grammatically correct.” It does not provide any insight into whether the CQL as written correctly implements the intended CDS logic. This is accomplished by the level of testing described in the next section.

6.1.2 Logic Testing

While Format Validation is a good first step when it comes to testing, it does not indicate whether the ASBI CDS is functioning as intended. Because CQL logical expressions dictate so much of the behavior of the CDS, the next level of testing consists of testing the validity of the CQL itself. All CQL written for the ASBI CDS has been done using a test-driven development (TDD) approach (Wikipedia, n.d.-d). TDD involves iteratively developing software by first writing a test consisting of input data and a set of expected results and then writing just enough software to ensure the test passes. Each test should focus on a different aspect of the desired behavior of the software. The TDD process is depicted graphically in Figure 6.

![Figure 6. Diagram showing the test-driven development approach taken for authoring CQL](image)

To support TDD development of CQL, the CQL Testing Framework open source tool has been leveraged (Agency for Healthcare Research and Quality, n.d.). The CQL Testing Framework allows test cases to be defined in specially formatted files; each test file consists of the following components:

- Human readable test name
- Set of synthetic FHIR data (inputs to the CQL)
- Set of expected results (outputs from the CQL)

An example logic test case can be seen in Figure 7. The name of the test provides a general indication about the nature of what is being tested; in this case it indicates the input FHIR data is meant to represent a female patient who is under the age of 65 years, is not pregnant, and has filled out a USAUDIT-C instrument with a resulting score below a threshold. The responses to the USAUDIT-C can be seen within the QuestionnaireResponse resource, under the data section. The results section lists the names of the CQL expressions being tested; next to each expression name is the value that the test asserts is the correct result. According to the test, the synthetic patient should not receive the full USAUDIT based upon the input responses to the first three questions, but the pregnancy question should be administered.

The CQL Testing Framework works by reading the example test case file shown in Figure 7, using the items listed in the data section to generate FHIR resources, which are then used as input data as the CQL is executed using the CQL Execution Framework Reference Implementation (The MITRE Corporation, n.d.), and then finally the outputs from the executed CQL are compared to those listed under the results section of the test case file. Any incorrect results are reported back via the CQL Testing Framework, which are then used to refine the CQL until the test passes. A total of 50 different logic tests were defined for the ASBI CDS; the list of the test case names is provided in Table 4. The details of each test case can be found in the separate set of testing files.

name: Not Pregnant Female Under 65 Below AUDIT-C Threshold

data:
- resourceType: Patient
 name: Jane Smith
 gender: female

extension:
 valueCode: 'F'
 birthDate: 1978-07-16

import: *UsAuditQuestionnaire

resourceType: QuestionnaireResponse
questionnaire: 'http://hl7.org/fhir/usaudit'
status: 'in-progress'
authored: 2020-03-09

item:
- linkId: 'prescreen-question'
 answer:
 - valueCoding: http://www.cdc.gov/ncbdd/fasd#CODE Yes

- linkId: 'usaudit-question-one'
 answer:
 valueCoding: http://www.cdc.gov/ncbdd/fasd#CODE Monthly

- linkId: 'usaudit-question-two'
 answer:
 valueCoding: http://www.cdc.gov/ncbdd/fasd#CODE Monthly

- linkId: 'usaudit-question-three'
 answer:
 valueCoding: http://www.cdc.gov/ncbdd/fasd#CODE Monthly

results:
UsAuditQuestion3Text: 'How often do you have 4 or more drinks on one occasion?'
ThresholdUsAuditC: 7
ScoreUsAuditC: 6
DisplayUsAuditQuestions4to8: false
DisplayScoreFullUsAudit: false
ScoreFullUsAudit: 6
DisplayPregnancyQuestion: true

Figure 7. Example logic test case
Table 4. List of logic tests

<table>
<thead>
<tr>
<th>Number</th>
<th>Test Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Excluded Active AUD</td>
</tr>
<tr>
<td>2</td>
<td>Female at Birth</td>
</tr>
<tr>
<td>3</td>
<td>Not Pregnant Female Under 65 Above AUDIT-C Threshold</td>
</tr>
<tr>
<td>4</td>
<td>Pregnant Female Under 65 Above AUDIT-C Threshold</td>
</tr>
<tr>
<td>5</td>
<td>Not Pregnant Female Under 65 Below AUDIT-C Threshold</td>
</tr>
<tr>
<td>6</td>
<td>Pregnant Female Under 65 Below AUDIT-C Threshold</td>
</tr>
<tr>
<td>7</td>
<td>Complete Full USAUDIT</td>
</tr>
<tr>
<td>8</td>
<td>Complete Full USAUDIT (1)</td>
</tr>
<tr>
<td>9</td>
<td>Continue to Full USAUDIT</td>
</tr>
<tr>
<td>10</td>
<td>Continue to Full USAUDIT (1)</td>
</tr>
<tr>
<td>11</td>
<td>Has had hysterectomy</td>
</tr>
<tr>
<td>12</td>
<td>Has Recent APS Response of No</td>
</tr>
<tr>
<td>13</td>
<td>Has Recent USAUDIT Responses But No Scores</td>
</tr>
<tr>
<td>14</td>
<td>Has Recent USAUDIT Score</td>
</tr>
<tr>
<td>15</td>
<td>Has Recent USAUDIT-C Score</td>
</tr>
<tr>
<td>16</td>
<td>Has Two Recent USAUDIT-C Scores</td>
</tr>
<tr>
<td>17</td>
<td>Previously answered USAUDIT Question One twice before with one never</td>
</tr>
<tr>
<td>18</td>
<td>Previously answered USAUDIT Question One twice before with two nevers</td>
</tr>
<tr>
<td>19</td>
<td>Is Included</td>
</tr>
<tr>
<td>Number</td>
<td>Test Name</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>Is Not Included</td>
</tr>
<tr>
<td>21</td>
<td>Male at Birth</td>
</tr>
<tr>
<td>22</td>
<td>Male Over 65 Above AUDIT-C Threshold</td>
</tr>
<tr>
<td>23</td>
<td>Male Over 65 Below AUDIT-C Threshold</td>
</tr>
<tr>
<td>24</td>
<td>Male Under 65 Above AUDIT-C Threshold</td>
</tr>
<tr>
<td>25</td>
<td>Male Under 65 Below AUDIT-C Threshold</td>
</tr>
<tr>
<td>26</td>
<td>Male Under 65 Below AUDIT-C Threshold with Active AUD</td>
</tr>
<tr>
<td>27</td>
<td>Male Under 65 Below AUDIT-C Threshold with Inactive AUD</td>
</tr>
<tr>
<td>28</td>
<td>Missing sex at birth extension</td>
</tr>
<tr>
<td>29</td>
<td>No pregnancy question (outside age range)</td>
</tr>
<tr>
<td>30</td>
<td>Not Included Under Age</td>
</tr>
<tr>
<td>31</td>
<td>Not Pregnant Alcohol Screening Lookback</td>
</tr>
<tr>
<td>32</td>
<td>Old Pregnant Observation</td>
</tr>
<tr>
<td>33</td>
<td>Pregnant Condition Active</td>
</tr>
<tr>
<td>34</td>
<td>Pregnant Condition Active (alternate code)</td>
</tr>
<tr>
<td>35</td>
<td>Pregnant Condition Old</td>
</tr>
<tr>
<td>36</td>
<td>Pregnant Condition Recurrence</td>
</tr>
<tr>
<td>37</td>
<td>Pregnant Condition Active But Not Verified</td>
</tr>
<tr>
<td>38</td>
<td>Pregnant Alcohol Screening Lookback (last screening after pregnancy)</td>
</tr>
<tr>
<td>Number</td>
<td>Test Name</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>39</td>
<td>Pregnant Alcohol Screening Lookback (last screening after pregnancy but more than 3 months ago)</td>
</tr>
<tr>
<td>40</td>
<td>Pregnant Alcohol Screening Lookback (last screening before pregnancy)</td>
</tr>
<tr>
<td>41</td>
<td>Pregnant Observation Amended</td>
</tr>
<tr>
<td>42</td>
<td>Pregnant Observation Corrected</td>
</tr>
<tr>
<td>43</td>
<td>Pregnant Observation Final</td>
</tr>
<tr>
<td>44</td>
<td>Previously answered "Monthly" to USAUDIT Question One</td>
</tr>
<tr>
<td>45</td>
<td>Sex at birth unknown</td>
</tr>
<tr>
<td>46</td>
<td>Stop after USAUDIT-C Tests</td>
</tr>
<tr>
<td>47</td>
<td>Stop after USAUDIT-C Tests (1)</td>
</tr>
<tr>
<td>48</td>
<td>Stop after USAUDIT-C Tests (2)</td>
</tr>
<tr>
<td>49</td>
<td>Stop after USAUDIT-C Tests (3)</td>
</tr>
<tr>
<td>50</td>
<td>Stop after USAUDIT-C Tests (4)</td>
</tr>
</tbody>
</table>

6.1.3 End-to-End Testing

Logic testing is useful because it helps ensure that the CDS logic, defined by CQL expressions, returns the correct results when provided the appropriate data. Logic testing does not, however, evaluate the other important aspects of the ASBI CDS, namely the questions and available responses defined in the Questionnaire. End-to-end testing provides an evaluation of the CDS where all components are executing together as intended in the design. Ideally this would be accomplished by integrating the ASBI CDS into a real health IT system, as depicted in Figure 5.

Lacking a real health IT system for this purpose, a stand-in must be replicated that will mimic, or “mock,” the key aspects required by the ASBI CDS. This is accomplished by creating a software program, called a test harness, described in the next section. End-to-end testing is accomplished by running the test harness with the ASBI CDS definitions and the appropriate FHIR resources as input data; a subset of the test cases defined in Section 6.1.2 were considered. Having the test harness also allows ad-hoc “kick the tires” sorts of tests to be easily and quickly conducted. This
can be useful for uncovering errors in the CDS that were not anticipated during the design or logic testing phases.

6.2 End-to-End Test Harness

The end-to-end test harness is a software program capable of executing the ASBI CDS in a simulated context. The end-to-end test harness not only facilitates end-to-end testing of the ASBI CDS, but it can also serve as a starting point for an integration with a real health IT system. This section describes the end-to-end test harness, starting with a high-level overview of its structure. Next, the individual software components in the test harness are listed and described.

6.2.1 Test Harness Structure

This section describes the overall structure of the test harness used for end-to-end testing. There are certain aspects of a real health IT integration which can be mimicked or mocked, and others which cannot be. Specifically, the following aspects cannot be easily mimicked or mocked:

- Real patients and real clinicians (would pose concerns with personally identifiable information)
- Proprietary servers and software (details regarding these are either not known or not usable, given intellectual property [IP] constraints)
- Triggers (are very specific to the type of system being integrated with and do not generalize well)

However, appropriate stand-ins can be provided for the following aspects:

- FHIR Server (based on open standards and software)
- EHRs (can be simulated using synthetic data formatted using open standards)
- SMART on FHIR App (based on open standards and software)

Figure 8 depicts this using the notional ASBI CDS integration shown previously; any component that cannot be easily emulated has been crossed off. What remains constitutes aspects which are simulated using the end-to-end test harness. It should be emphasized that the end-to-end test harness is operational software that can serve as a starting point for an integration of the ASBI CDS with a real health IT system. This is why the software components discussed in Section 6.2.2.2 are being released under open source licenses.
As seen in Figure 8, there are two main software components in the test harness: 1) a FHIR Server (with an accompanying “EHR” containing synthetic test data) and 2) a SMART on FHIR App that renders the Questionnaire on the screen and records the patient responses. The former is referred to as the “ASBI CDS FHIR Server,” and the latter is called the “ASBI CDS Screening App.” These two software components must communicate with each other via a SMART on FHIR interface and must realistically emulate the CDS experience for users during end-to-end testing; they are both discussed in more detail below.

6.2.2 Underlying Technologies

This section describes the software libraries used to build the end-to-end test harness; both existing as well as newly developed software were required to provide the necessary functionality.

6.2.2.1 Existing Open Source Software

This section describes the existing open source software libraries that have been leveraged in the construction of the end-to-end test harness.

6.2.2.1.1 Asymmetrik Node Server

Asymmetrik has produced a FHIR server implementation (Asymmetrik, n.d.) based upon the Node.js JavaScript runtime engine (OpenJS Foundation, n.d.). A version of Asymmetrik’s implementation was the Stage 1 winner of the Secure API Server Showdown Challenge sponsored by the ONC. The Asymmetrik implementation is available under an open source license, and as described in Section 6.2.2.2.3 is used to provide FHIR API capabilities for the test harness.
6.2.2.1.2 Oauth Express Server

SMART on FHIR requires a server (Health Level 7, n.d.-b) that provides an authorization protocol that adheres to the OAuth standard (Wikipedia, n.d.-b). In order to fully test the SMART on FHIR launch sequence during end-to-end testing, the test harness must have some sort of OAuth implementation available. The Express OAuth Server, an open source OAuth implementation based upon Node.js, is used to provide this capability in the test harness (Oauthjs, n.d.).

6.2.2.1.3 CQL Execution Engine

All CQL calculations in the test harness are executed using the same CQL execution engine used for the logic testing (The MITRE Corporation, n.d.).

6.2.2.1.4 SurveyJS

SurveyJS is a JavaScript library for rendering surveys and forms in a web browser and capturing user responses (SurveyJs, n.d.). The end-to-end test harness uses SurveyJS to mechanize the alcohol screening instrument, rendering the questions to the screen, and capturing user responses. It provides all the capabilities needed for implementing the ASBI CDS Questionnaire. Unfortunately, SurveyJS does not natively support FHIR, so a new software tool was created to translate FHIR Questionnaires to a format that SurveyJS understands (see Section 6.2.2.2.1).

6.2.2.1.5 Vue.js

Vue is a JavaScript front-end framework for building user interfaces (Vue.js, n.d.). Vue allows the user-facing aspects of the end-to-end test harness to be rapidly assembled and debugged.

6.2.2.2 Newly Developed Software

This section describes the custom software developed for this project, which is being released as open source software to facilitate future integrations of the ASBI CDS with real health IT systems.

6.2.2.2.1 Surveys on FHIR

Surveys on FHIR is a software library created for the ASBI CDS project so that surveys defined as FHIR Questionnaires could be used with the SurveyJS library, which does not natively support FHIR. This software library aims to broaden the ecosystem of tools for implementing FHIR Questionnaires in practice. Without Surveys on FHIR, SurveyJS could not be used to render the alcohol screening instruments, and an alternative would have to be found or developed from scratch.

6.2.2.2.2 ASBI CDS Screening App

The ASBI CDS Screening App is a SMART on FHIR application that presents the user with the alcohol screening instrument for assessing patient alcohol consumption behaviors. After the app is authorized and launched, the required patient data is requested from the FHIR server. In the case of the end-to-end test harness, this is the ASBI CDS FHIR Server described in the next section. Once the FHIR resources are loaded, the FHIR Questionnaire representing the alcohol screening instrument is loaded, converted to SurveyJS format using the Surveys on FHIR library,
and then input into the SurveyJS library. SurveyJS, along with Vue, are used to render the first item of the Questionnaire to the screen.

The ASBI CDS Screening App is interactive in the sense that it reacts to user inputs, each time running the CQL logical expressions in the background using the loaded FHIR resources and the current user responses. Logic encoded in the Questionnaire and CQL Library dictate the ordering of questions and whether certain questions are presented to the user. When the alcohol screening instrument is complete, a FHIR QuestionnaireResponse resource is generated (Health Level 7, n.d.-c). If write-back capability is supported by the FHIR Server, then the patient responses to the alcohol screening are also written back to the patient record in the form of this QuestionnaireResponse.

6.2.2.2.3 ASBI CDS FHIR Server

The ASBI CDS FHIR Server combines the Asymmetrik FHIR Server and the OAuth Express Server projects to supply a SMART on FHIR compliant endpoint to support end-to-end testing. A file-based database representing the simulated EHR is used to store test FHIR resources as well as any QuestionnaireResponses sent from the ASBI CDS Screening App. The ASBI CDS FHIR Server does not implement any of the ASBI CDS logic; it is only necessary to support end-to-end testing.
Appendix A. Artifact Logic and Decision Log

A.1 Artifact CDS Logic Flow

The USAUDIT Alcohol Screening CDS artifact was informed by the Alcohol Use Disorders Identification Test, Adapted for Use in the United States: A Guide for Primary Care Practitioners (Babor et al., 2017). Where guidance in this evidence-based source diverged from guidance in the Alcohol Use Disorders Identification Test (AUDIT) manual published by the World Health Organization (WHO), the clinical decision support (CDS) logic was specified to align with the U.S. adaption of the Alcohol Use Disorders Identification Test (USAUDIT). Translating knowledge in narrative evidence-based sources requires a considerable level of effort and interpretation. When translating complex guidelines, it is often helpful to develop a high-level depiction of the evidence that can serve as the foundation for more detailed representations of the knowledge as CDS development progresses. The CDS logic flow diagram in Figure 9 displays the outcome of the first “phase” of translating knowledge in the narrative USAUDIT source into a series of events and decisions that enable evidence-based alcohol screening. It displays an overview of the CDS logic and provides potential implementers with an impression of the CDS logic flow.
Next, the CDS Development Team utilized the CDS flow depicted in Figure 9 and granular details identified in the narrative USAUDIT guide, to inform the development of a more comprehensive semistructured (i.e., Level 2, L2, human readable) representation of the knowledge. During this phase of development, the Development Team clarified guidance that was imprecise to provide the specificity required by software engineers to develop the structured (i.e., coded, Level 3, L3) representation. Decisions...
made while interpreting and clarifying the guidelines are outlined in Appendix A.4 to provide transparency on the artifact development process and enhance trust in the artifact.

The semistructured logic listed in this section of the appendix is divided into several “steps” to make the sequencing of the logic more understandable. Each step roughly aligns with a decision point during the alcohol screening process. Implementing organizations can decide what triggering event best complements the workflow in their organization to initiate Step 1 (e.g., the start of a patient encounter). Words listed in parenthesis within the logic are Fast Healthcare Interoperability Resources (FHIR) attributes that specify the “status” of clinical concepts such as observations (e.g., screening events) and diagnoses (e.g., Alcohol Use Disorder [AUD]). The status of a clinical concept can be an important component of logic specifications in some instances. For example, the CDS is specified to only evaluate screening results with a status of “final,” “amended,” and “corrected” as TRUE (i.e., valid for the purpose of this CDS). Therefore, screening results with a status of “preliminary,” “cancelled,” and “entered in error” will be evaluated as FALSE (i.e., invalid for the purpose of this CDS).

Step 1: Consider presentation of the Alcohol Prescreen (PS) Question

Inclusion logic: Patient is >= 18 years old

Exclusion logic:

- Evidence of alcohol screening in the past 12 months (final, amended, corrected)
 - AND NOT
 - Pregnant (active, recurring)
 - OR Pregnancy Observation in the past 42 weeks (final, amended, corrected)
 - OR Evidence of alcohol screening in the past three months (final, amended, corrected) while they are pregnant (Note: A pregnant patient should be screened as early as possible in the first trimester of their pregnancy and every three months afterwards while they are pregnant).
 - OR AUD (active, recurrence, relapse)

CDS Actions:

- Introduce the purpose of alcohol use screening
- Display the alcohol PS question (i.e., “Do you sometimes drink beer, wine, or other alcoholic beverages?”)
Step 2: Consider whether to perform USAUDIT-C screening

Step 2, Logic Path #1 (continue screening)

Inclusions:
- Patient is >= 18 years old
- AND most recent alcohol PS question response is “Yes”

Exclusions: As listed in Step 1 exclusion logic

CDS Actions:
- Display USAUDIT-C screening instructions
- Display standard drink size graphic
- Display Question #1 of the USAUDIT-C
- Record and display the response to Question #1

Step 2, Logic Path #2 (stop screening)

Inclusions:
- Patient is >= 18 years old
- AND most recent alcohol PS question response is “No”

Exclusions: As listed in Step 1 exclusion logic

CDS Action: End screening

Step 3: Consider administering Question #2 and Question #3 of the USAUDIT-C

Step 3, Logic Path #1 (continue screening for women, men > 65 years old, and individuals whose sex at birth is unknown)
Inclusions:

- Patient is ≥ 18 years old
- AND most recent alcohol PS question response is “Yes”
- AND NOT most recent USAUDIT-C Question #1 response is “Never”
- AND Female
- OR Male > 65 years old
- OR Sex at birth is Unknown

Exclusions: As listed in Step 1 exclusion logic

CDS Actions:

- Continue to display USAUDIT-C screening instructions
- Continue to display standard drink size graphic
- Display Question #2 and Question #3 of the USAUDIT-C (Question #3 = “How often do you have four or more drinks on one occasion?”)
- Record and display the responses to Question #2 and Question #3
- Calculate, record, and display the USAUDIT-C score

Step 3, Logic Path #2 (continue screening for women, men ≤ 65 years old)

Inclusions:

- Patient is ≥ 18 years old
- AND most recent alcohol PS question response is “Yes”
- AND NOT most recent USAUDIT-C Question #1 response is “Never”
- AND Male ≤ 65 years old
Exclusions: As listed in Step 1 exclusion logic

CDS Actions:
- Continue to display USAUDIT-C screening instructions
- Continue to display standard drink size graphic
- Display Question #2 and Question #3 of the USAUDIT-C (Question #3 = “How often do you have five or more drinks on one occasion?”)
- Record and display the responses to Question #2 and Question #3
- Calculate, record, and display the USAUDIT-C score

Step 3, Logic Path #3 (stop screening)

Inclusions:
- Patient is >= 18 years old
- AND most recent alcohol PS question response is “Yes”
- AND most recent USAUDIT-C Question #1 response is “Never”

Exclusions: As listed in Step 1 exclusion logic

CDS Action: End screening

Step 4: Consider additional screening

Step 4, Logic Path #1 (provide full USAUDIT)

Inclusions:
- Patient is >= 18 years old
- AND most recent alcohol PS question response is “Yes”
- AND NOT most recent USAUDIT-C Question #1 response is “Never”
- AND
Most recent USAUDIT-C score >= 7
 AND Female
 OR Male > 65 years old
 OR Sex at birth is Unknown
 OR
 Most recent USAUDIT-C score >= 8
 AND Male <= 65 years old
Exclusions: As listed in Step 1 exclusion logic
CDS Actions:
 Display Question #4 - Question #10 of the USAUDIT
 Record and display the responses to Question #4 - Question #10
 Calculate, record, and display the USAUDIT score

Step 4, Logic Path #2 (skip to Question #9 and Question #10 of the USAUDIT after finishing the USAUDIT-C)

Inclusions:
 Patient is >= 18 years old
 AND most recent alcohol PS question response is “Yes”
 AND NOT most recent USAUDIT-C Question #1 response is “Never”
 AND
 Most recent USAUDIT-C score < 7
 AND Female
 OR Male > 65 years old
OR Sex at birth is Unknown

OR

Most recent USAUDIT-C score < 8

AND Male <= 65 years old

AND Alcohol Use Disorder (AUD) (inactive, remission, resolved)

Exclusions: As listed in Step 1 exclusion logic

CDS Actions:

Display Question #9 and Question #10 of the USAUDIT

Record and display the responses to Question #9 and Question #10

Step 4. Logic Path #3 (stop screening)

Inclusions:

Patient is >= 18 years old

AND most recent alcohol PS question response is “Yes”

AND NOT most recent USAUDIT-C Question #1 response is “Never”

AND

Most recent USAUDIT-C score < 7

AND Female

OR Male > 65 years old

OR Sex at birth is Unknown

OR

Most recent USAUDIT-C score < 8
AND Male <= 65 years old
Exclusions: As listed in Step 1 exclusion logic
CDS Action: End screening

Step 5: Consider pregnancy status

Step 5, Logic Path #1 (post USAUDIT-C)

- **Inclusions:**
 - Patient is >= 18 years old and < 50 years old
 - AND Female
 - AND most recent USAUDIT-C score < 7
 - AND NOT AUD (inactive, resolved)

- **Exclusions:**
 - Carry over exclusions for Step 1
 - AND
 - Pregnant (active, recurring)
 - OR Pregnancy Observation in past 42 weeks (final, amended, corrected)
 - OR Hysterectomy (completed)

- **CDS Actions:**
 - Display “pregnancy question” (i.e., “Are you pregnant or trying to become pregnant?”)
 - Record and display response to the pregnancy question

Step 5, Logic Path #2 (post USAUDIT-C plus Question #9 and Question #10)

- **Inclusions:**
Patient is >= 18 years old and < 50 years old
AND Female
AND most recent USAUDIT-C score < 7
AND AUD (inactive, resolved)
AND most recent responses to USAUDIT Question #9 and Question #10

Exclusions:
Carry over exclusions for Step 1
AND
 Pregnant (active, recurring)
 OR Pregnancy Observation in past 42 weeks (final, amended, corrected)
 OR Hysterectomy (completed)

CDS Actions:
Display “pregnancy question” (i.e., “Are you pregnant or trying to become pregnant?”)
Record and display response to the pregnancy question

Step 5, Logic Path #3 (post full USAUDIT)

Inclusions:
Patient is >= 18 years old and < 50 years old
AND Female
AND most recent USAUDIT-C score >= 7

Exclusions:
Carry over exclusions for Step 1
AND

Pregnant (active, recurring)

OR Pregnancy Observation in past 42 weeks (final, amended, corrected)

OR Hysterectomy (completed)

CDS Actions:

Display “pregnancy question” (i.e., “Are you pregnant or trying to become pregnant?”)

Record and display response to the pregnancy question

A.3 CDS Concept Definitions

Table 5 defines many of the clinical concepts and terms used in the semistructured CDS representation, to provide clarity on what each logic concept means and why it was expressed as listed. These concepts were informed by or derived from text in evidence-based sources (e.g., USAUDIT, WHO AUDIT, research reviews).

<table>
<thead>
<tr>
<th>Location in CDS Logic</th>
<th>Concept</th>
<th>Definition and/or Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Step</td>
<td>“>=”</td>
<td>Greater than or equal to a given value (e.g., >= 18 years old)</td>
</tr>
<tr>
<td>Step 1 Exclusions</td>
<td>“evidence of alcohol screening”</td>
<td>Any “final,” “amended,” or “corrected” alcohol screening score present in the patient record. Specifically, the CDS code looks for results associated with the following screening assessments: 1) a USAUDIT-Consumption (USAUDIT-C) or USAUDIT score, 2) a WHO AUDIT-Consumption (WHO AUDIT-C) or WHO AUDIT score, 3) an alcohol PS question response of “No”, or 4) an alcohol PS question response of “Yes” AND an AUDIT Question #1 response of “Never” (which equates to a score of “0”). These screening assessments were selected because they evaluate the full spectrum of alcohol use, as opposed to evaluating binge drinking alone (e.g., the Single Alcohol Screening Question) or social problems and alcohol-related harms alone if the patient drinks alcohol. Please see additional information provided in Section 4.2, #3.</td>
</tr>
<tr>
<td>Location in CDS Logic</td>
<td>Concept</td>
<td>Definition and/or Rationale</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Steps 1-4 Inclusions, Exclusions</td>
<td>“in the past x months”</td>
<td>The CDS code looks for evidence of a specific event, condition, result (e.g., alcohol screening) to have occurred within a specified period of time from the current date (e.g., within the past 12 months from today).</td>
</tr>
<tr>
<td>Every Step</td>
<td>“AND NOT”</td>
<td>A CDS logic operator that ensures a specific event, condition, result, etc. is not present in the patient record</td>
</tr>
<tr>
<td>Steps 1 & 5</td>
<td>“pregnant”</td>
<td>A diagnosis of pregnancy. An “active” or “recurring” FHIR resource clinicalStatus must be associated with the pregnancy to ensure the individual is currently pregnant. This is included in the logic because women who are pregnant require unique care (e.g., they should be screened for alcohol use more frequently and be provided with distinct brief interventions based on whether they are drinking ANY alcohol).</td>
</tr>
<tr>
<td>Steps 1 & 5</td>
<td>“pregnancy observation within the past 42 weeks”</td>
<td>Pregnancy is also expressed as a FHIR “Observation” in the CDS logic, to identify a second way that this concept can be recorded in a health IT system. “Within the past 42 weeks” is specified as a lookback timeframe so that only a current/active pregnancy is considered. The American College of Obstetricians and Gynecologists (ACOG) defines “early, full, and late term pregnancy” as up to 42 weeks of gestation (Accreta, 2002). Of note, since gestation date is not often specified in a health IT system, the CDS logic evaluates the date a pregnancy observation was recorded in the system. The FHIR ObservationStatus must be “final” or “amended” to ensure the observation is complete and verified by an authorized individual.</td>
</tr>
<tr>
<td>Step 1 Exclusions</td>
<td>“onset date”</td>
<td>The date a condition (e.g., diagnosis) began</td>
</tr>
<tr>
<td>Step 1 Exclusions</td>
<td>“recorded date”</td>
<td>The date a condition (e.g., diagnosis) was recorded in the health IT system</td>
</tr>
<tr>
<td>Step 1 & Step 4</td>
<td>“AUD”</td>
<td>A diagnosis of Alcohol Use Disorder. In Step 1 a clinicalStatus of “active,” “relapse,” or “recurrence” is required, to ensure the patient is currently experiencing the symptoms of the condition or there is evidence of the condition. In Step 4, a clinicalStatus of “inactive” or “resolved” is required, to indicate that a patient has a history of AUD but is no longer experiencing symptoms associated with the condition.</td>
</tr>
<tr>
<td>Step 1 CDS Actions</td>
<td>“introduce the purpose of alcohol use screening”</td>
<td>Display text that explains the rationale for conducting alcohol screening. Depending on how the CDS is implemented, this could be presented to 1) clinical staff administering the screening or 2) the patient taking the screening assessment.</td>
</tr>
<tr>
<td>Steps 1-5 CDS Actions</td>
<td>“display… question”</td>
<td>Conveys the intent to present a specific question or group of questions indicated for the patient, in support of evidence-based alcohol screening.</td>
</tr>
<tr>
<td>Location in CDS Logic</td>
<td>Concept</td>
<td>Definition and/or Rationale</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Steps 1-4</td>
<td>“alcohol prescreen (PS) question”</td>
<td>The alcohol PS question is, “Do you sometimes drink beer, wine, or other alcoholic beverages?”. Presenting this question prior to initiating a multi-question alcohol use assessment removes the need to assess patients for risky alcohol use if they never drink alcohol.</td>
</tr>
<tr>
<td>Steps 1 & 2 CDS Actions</td>
<td>“display the U.S. standard drink size graphic”</td>
<td>Conveys the intent to present a picture of the standard drink size in the U.S. (i.e., a drink that contains 14 grams of pure alcohol) for beverages such as beer, wine, and alcoholic spirits (Centers for Disease Control and Prevention (CDC), 2018). The graphic enables a patient to provide a more accurate response about their alcohol intake by defining what is meant by a “drink.”</td>
</tr>
<tr>
<td>Steps 1-4 CDS Actions</td>
<td>“record and display the entered response…”</td>
<td>Conveys the intent to capture and store any/all responses to screening questions and display them in the health IT user interface. Depending on how the CDS is implemented, the display might occur within a documentation template in the electronic health record (EHR), within an app that is integrated with the EHR, etc.</td>
</tr>
<tr>
<td>Steps 2-4 Inclusions</td>
<td>“most recent”</td>
<td>Enables the CDS code to evaluate data that was recorded as near to the screening event as possible. Data that is “most recent” is most likely to reflect the patient’s current status.</td>
</tr>
<tr>
<td>Steps 2-5 Inclusions</td>
<td>“response is”</td>
<td>The CDS logic evaluates the patient’s answer to specific questions to determine what interventions and actions are indicated. Response examples include “Yes,” “No,” “Never.”</td>
</tr>
<tr>
<td>Steps 2-4 Exclusions</td>
<td>“carry over exclusions from Step 1”</td>
<td>This phrase conveys the need to include all exclusion specifications listed in Step 1 in the present logic path. The phrase aids in condensing the L2 expression to make the logic more readable and less repetitive.</td>
</tr>
<tr>
<td>Steps 2 & 3 CDS Actions</td>
<td>“screening instructions”</td>
<td>Directions presented to the individual administering the screening (e.g., a medical assistant) or taking the screening (e.g., the patient).</td>
</tr>
<tr>
<td>Steps 2-4 CDS Actions</td>
<td>“display Question #…”</td>
<td>To align with the USAUDIT guide, individual USAUDIT-C/USAUDIT questions are presented to the patient in a designated sequence. Based on the patient’s medical history, demographics, and response to a given question, the logic will present a patient-specific series of screening questions that align with USAUDIT-C/USAUDIT guidance.</td>
</tr>
<tr>
<td>Steps 2 & 3</td>
<td>“USAUDIT-C”</td>
<td>The U.S. Alcohol Use Disorders Identification Test-Consumption questionnaire is a short, easy-to-administer screening process using the first three questions of the AUDIT, modified for the U.S. standard drink. In this CDS, the patient’s AUDIT-C score is calculated. If the score is >= 7 for 1) women, 2) individuals whose sex is Unknown, or 3) men older than 65, or if the score is >=8 for men who are <= 65 years old, the remainder of the USAUDIT questions are administered to the patient (Bradley et al., 2007).</td>
</tr>
<tr>
<td>Step 3 Inclusions</td>
<td>“>”</td>
<td>Greater than (e.g., greater than 65 years old)</td>
</tr>
<tr>
<td>Location in CDS Logic</td>
<td>Concept</td>
<td>Definition and/or Rationale</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Steps 3 & 4</td>
<td>"sex at birth is Unknown"</td>
<td>The patient’s sex at birth is recorded in the health IT system as “unknown.” Unknown is a valid response for an individual’s sex at birth, by HL7 standards outlined in the Interoperability Standards Advisory published by the Office of the National Coordinator for Health Information Technology (ONC) (The Office of the National Coordinator for Health Information Technology, n.d.). Because Question #3 of the USAUDIT is sex and age specific, it is important to consider all valid responses for “sex at birth,” otherwise an individual whose sex at birth is recorded as Unknown would not be presented with Question #3.</td>
</tr>
<tr>
<td>Step 3 CDS Actions</td>
<td>“How often do you have x or more drinks on one occasion?”</td>
<td>The quantity of drinks populated in Question #3 in the USAUDIT-C/USAUDIT can vary based on the patient’s sex and age. Question #3 assesses the frequency of binge drinking behavior. The binge drinking thresholds used in this CDS were defined by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) to align with U.S. standard drink sizes (Alcoholism, n.d.).</td>
</tr>
<tr>
<td>Step 3 & 4 Inclusions</td>
<td>"(\leq)"</td>
<td>Less than or equal to (e.g., less than or equal to 65 years old)</td>
</tr>
<tr>
<td>Steps 3 & 4 CDS Actions</td>
<td>“calculate”</td>
<td>The action of computing an USAUDIT-C or USAUDIT score. This computation is conducted by the CQL code in the L3 representation of the artifact, in alignment with USAUDIT guidance.</td>
</tr>
<tr>
<td>Steps 3 - 5 Inclusions</td>
<td>"(<)"</td>
<td>Less than (e.g., less than 50 years old)</td>
</tr>
<tr>
<td>Step 5</td>
<td>"hysterectomy"</td>
<td>A surgery to remove a woman’s uterus. If a woman has undergone a hysterectomy, there is no need to ask her if she is pregnant (i.e., present the pregnancy question).</td>
</tr>
<tr>
<td>Step 5</td>
<td>"pregnancy question"</td>
<td>The pregnancy question is, “Are you currently pregnant or trying to become pregnant?”. This question is presented to every woman of reproductive age, to capture this important information (unless they meet the exclusion criteria). The response is required by the companion Alcohol Brief Intervention and Referral CDS artifact, to inform the care recommendations generated by the CDS.</td>
</tr>
</tbody>
</table>
A.4 Artifact Development Decision Log

The CDS Development Team made numerous decisions while translating the USAUDIT narrative text into semistructured and later, structured, CDS logic. Table 6 provides insight on those decisions. The table lists a “Decision Category,” which was informed by the journal article titled, “Automating Guidelines for Clinical Decision Support: Knowledge Engineering and Implementation” that outlines a methodology for knowledge translation (Tso et al., 2016). It also lists the high-level “Concept” related to the entry and the “Rationale” for each decision.

<table>
<thead>
<tr>
<th>Decision Category</th>
<th>Concept</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add explanation</td>
<td>Separating CDS logic that delivers brief intervention from CDS logic that delivers alcohol screening</td>
<td>The CDS Development Team took a modular approach to developing alcohol screening and brief intervention (ASBI) CDS artifacts, to 1) lessen the complexity of each artifact and 2) enable organizations to only integrate portions of logic that they really need (e.g., are not already present in their health IT system). Some organizations may already use a version of the AUDIT alcohol screening questionnaire and can capture the individual patient responses and/or the AUDIT score in their health IT system but not have CDS to deliver evidence-based care recommendations. As a result, they may prefer to implement the Alcohol Brief Intervention and Referral CDS artifact only. Others may already have the (WHO) AUDIT and ASBI CDS logic embedded in their system and prefer only to add USAUDIT screening. A modular approach allows for personalized implementation choices without the need to edit CDS code.</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Screening adults only</td>
<td>The USAUDIT-C/USAUDIT identifies (in part) individuals who are drinking in excess of recommended levels for healthy adults (Babor et al., 2017). Adults are individuals 18 years old and older. Other screening tools such as CRAFFT (i.e., Car, Relax, Alone, Forget, Friends, Trouble) are validated screening instruments for adolescents (i.e., individuals under 18 years of age) (Centers for Disease Control and Prevention, 2014).</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Enabling annual screening for non-pregnant patients</td>
<td>The WHO recommends all patients be screened annually (Babor et al., 2001).</td>
</tr>
<tr>
<td>Decision Category</td>
<td>Concept</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Verify completeness/Add explanation</td>
<td>Ensuring pregnant women receive appropriate alcohol screening</td>
<td>The specifications outlined in the Step 1 exclusion logic facilitate alcohol screening during every trimester of a pregnancy, as recommended by Wright et al. and the American College of Nurse Midwives (American College of Nurse-Midwives, 2017; Wright et al., 2016). Because structured data that represents a woman’s current trimester (e.g., first, second, third) is not routinely available in EHR data, the logic was designed to look for evidence of alcohol screening in the past three months (the duration of a trimester). Additionally, the logic was specified to present alcohol screening to any pregnant patient who has not been screened in the past three months since becoming pregnant (i.e., the pregnancy onset date), or since the pregnancy was recorded in the EHR (i.e., the recorded date). In the absence of “onset date” or “recorded date” data, the logic will generate a screening opportunity to all pregnant women who have not been screened in the past three months of their pregnancy. Professional organizations and government entities (e.g., ACOG, USPSTF, WHO) provide varied recommendations on how often alcohol screening should be performed during pregnancy. The CDS Development Team and CDC sponsors of this project elected to enable screening every trimester to ensure clinicians have an opportunity several times during pregnancy to evaluate alcohol intake and reinforce the importance of abstinence (Wright et al., 2016). Some pregnant women may believe it is safe to drink in the second or third trimester, and alcohol screening provides an opportunity to educate these women and stress the importance of abstinence. Screening every trimester, as opposed to at every prenatal visit, also provides a balanced approach to screening so as not to increase clinician burden, cognitive demands, time, and workflow constraints. Implementing organizations are encouraged to consider their organizational policy and procedure prior to integrating this CDS. The frequency of screening pregnant woman can be increased or decreased to align with their requirements prior to integration with their health IT system.</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Excluding individuals with active AUD from alcohol screening</td>
<td>Individuals with active AUD are excluded from alcohol screening per the USPSTF recommendation Screening and Behavioral Counseling Interventions to Reduce Unhealthy Alcohol Use in Adolescents and Adults (i.e., “the recommendation does not apply to persons who have a current diagnosis of or who are seeking evaluation or treatment for alcohol abuse or dependence”) (Curry et al., 2018). Individuals with active AUD undergo evaluation and care specific to their condition, as opposed to what is recommended in preventive health guidelines for brief intervention.</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Incorporating an alcohol prescreen question</td>
<td>The CDS Development Team and CDC sponsors of this project elected to include the alcohol prescreen question as suggested by the NIAAA, to ensure that patients understand that beer and wine are considered alcoholic beverages. Use of the prescreen question also shortens the time spent on alcohol screening for patients who abstain from alcohol.</td>
</tr>
<tr>
<td>Decision Category</td>
<td>Concept</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Verify completeness/Add explanation</td>
<td>Considering how to approach screening for individuals whose sex at birth is recorded as "unknown" in their medical record</td>
<td>The specifications in this CDS provide different versions of Question #3 based on the patient's sex and age (e.g., If the patient is female, their sex is unknown, or they are male over 65 years old, the question is phrased, “How often do you have 4 or more drinks on one occasion?” (Babor et al., 2017). The CDS Development Team and CDC sponsors of this project opted to develop logic that reasoned over an “unknown” sex at birth response to ensure these individuals also received alcohol screening. The logic places individuals with Unknown recorded as their sex at birth in the same “drink threshold” as women and men over 65 years old, thus establishing a lower threshold for 1) the number of drinks in Question #3 and 2) scoring to determine if the full USAUDIT should be administered. As a result, the patient’s risk threshold may be slightly overestimated (which was preferred to potentially underestimating risk). Future implementers are encouraged to evaluate the accuracy and reliability of the “sex at birth” data in their system and consider if adjustments to the coded expression (i.e., L3) are indicated, before implementing this artifact in their system.</td>
</tr>
<tr>
<td>Verify completeness/Add explanation</td>
<td>Concluding screening based on response to Question #1</td>
<td>The USAUDIT states, “because patients who do not drink above recommended low-risk levels rarely experience problems or a related disorder, a two-stage screening process can make use of the USAUDIT considerably more efficient” (Babor et al., 2017). This statement refers to the administration of the first three USAUDIT questions to identify those patients that exceed low-risk levels, with those who have negative screening results requiring no additional screening. In addition, per USAUDIT instructions, “questioning may be stopped if a patient answers ‘Never’ to question 1, indicating that no alcohol has been consumed during the last year” (Babor et al., 2017).</td>
</tr>
<tr>
<td>Verify completeness/Add explanation</td>
<td>Concluding screening based on responses to Question #2 and Question #3</td>
<td>The USAUDIT states, “if the patient responds to questions #2 and #3 with ‘1 drink’ and ‘Never,’ respectively, questioning may stop” (Babor et al., 2017).The rationale for this statement is identical to what is stated above for Question #1. Of note, this guidance is not displayed in the CDS flow diagram or L2 expression, because the maximum score that can be assigned to a Question #1 response is six points. The response of “1 drink” to Question #2 and of “Never” to Question #3 each return a score of 0 points. If a patient scores 6 points on Question #1, and 0 points on Questions #2 and #3, their total USAUDIT-C score will be 6 (which is below the scoring criteria of “7” for women and men over 65 years old, and “8” for men 65 or younger, to continue with the full AUDIT). Therefore, screening will automatically conclude. As a safeguard, the L3 expression of this guidance is included in the CQL code as part of the scoring logic (Babor et al., 2017).</td>
</tr>
<tr>
<td>Decision Category</td>
<td>Concept</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Verify completeness/Add explanation</td>
<td>Delivering Question #9 and #10 to individuals with a history of AUD</td>
<td>The USAUDIT states, “Sometimes, a clinician will suspect that patients who appear to be abstinent or drinking moderately may have had problems with alcohol in the past. In such cases, following completion of the USAUDIT-C, it may be advisable to skip to questions #9 and #10, which ask about prior problems with alcohol. Patients who score points on these questions may be considered at risk if they begin to drink again and, therefore, should be advised to avoid alcohol” (Babor et al., 2017). In the CDS, “history of AUD” is defined as evidence of “inactive” or “resolved” AUD identified in the patient’s medical record (i.e., the problem occurred in the past and is no longer active). As mentioned previously, individuals with “active” AUD are excluded from alcohol screening per USPSTF guidance (Curry et al., 2018).</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Including a "pregnancy question" in this CDS</td>
<td>Per ACOG and CDC guidance, women who are pregnant or trying to become pregnant should abstain from alcohol (Centers for Disease Control and Prevention, 2014) (The American College of Obstetricians and Gynecologists, 2011). As a result, it is imperative for the CDS logic to identify these women so an appropriate intervention can be recommended to the clinician. Because "trying to become pregnant" is not routinely entered in a patient’s record, there is no way to identify evidence of this without asking a woman and capturing their response. A woman will not be asked this question if there is evidence of an active pregnancy in her record, if she has had a hysterectomy (making her unable to bear children), or if she is past reproductive age as defined in this CDS (i.e., 50 years of age or older). The rationale for defining this threshold for reproductive age is outlined in “specifying the upper threshold for reproductive age” entry at the end of this decision log. The patient’s response to this question is stored for use by the companion Alcohol Brief Intervention and Referral CDS artifact, to ensure that a pregnancy-specific intervention is displayed, if indicated.</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Determining where to place the "pregnancy question" in the CDS logic flow</td>
<td>The CDS Development Team and the CDC sponsors of this project elected to evaluate pregnancy status after the alcohol screening questions have been answered (i.e., ask the "pregnancy question" to women of reproductive age who have not had a hysterectomy and have no evidence of an active pregnancy in their medical record). This decision was made to avoid potentially influencing alcohol screening responses. Similarly, in ACOG’s Risky Alcohol Use Guide, it is only after completion of screening that a clinician considers the patient’s pregnancy status, to interpret their screening score (American College of Obstetrics and Gynecologists, n.d.).</td>
</tr>
<tr>
<td>Decision Category</td>
<td>Concept</td>
<td>Rationale</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Add explanation</td>
<td>Specifying the upper threshold for reproductive age</td>
<td>To be as patient-centered as possible, the CDS only displays the "pregnancy question" to women of reproductive age. Although the CDC defines the upper threshold of reproductive age as 45 years old (Johnson, 2006), the CDS Development Team and CDC sponsors of this project elected to increase the upper limit to “less than 50 years old” because more women are postponing pregnancy until later in life. This age limit aligns with the upper age for reproductive as defined by the National Survey of Family Growth. The benefit of delivering the question to women up to 50 years of age and identifying risky drinking far outweighs the inconvenience of delivering the question if a woman’s response was “No.”</td>
</tr>
</tbody>
</table>
Appendix B. USAUDIT Screening Questionnaire

Table 7 lists each USAUDIT question, its corresponding responses, and the score associated with each response as expressed in this CDS artifact.

Table 7: USAUDIT Screening Questionnaire

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Questions</th>
<th>Score of “0”</th>
<th>Score of “1”</th>
<th>Score of “2”</th>
<th>Score of “3”</th>
<th>Score of “4”</th>
<th>Score of “5”</th>
<th>Score of “6”</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>How often do you have a drink containing alcohol?</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>2-3 times a week</td>
<td>4-6 times a week</td>
<td>Daily</td>
</tr>
<tr>
<td>2</td>
<td>How many standard drinks containing alcohol do you have on a typical day when drinking?</td>
<td>1 drink</td>
<td>2 drinks</td>
<td>3 drinks</td>
<td>4 drinks</td>
<td>5-6 drinks</td>
<td>7-8 drinks</td>
<td>10 or more drinks</td>
</tr>
<tr>
<td>3</td>
<td>There are two different versions of question #3:</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>2-3 times a week</td>
<td>4-6 times a week</td>
<td>Daily</td>
</tr>
<tr>
<td></td>
<td>If male < 65 years old: How often do you have five or more drinks on one occasion?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>If female, sex at birth is unknown, or male >= 65 years old: How often do you have four or more drinks on one occasion?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>During the past year, how often have you found that you were not able to stop drinking once you had started?</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily or almost daily</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>During the past year, how often have you failed to do what was normally expected of you because of drinking?</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily or almost daily</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>During the past year, how often have you needed a drink in the morning to get yourself going after a heavy drinking session?</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily or almost daily</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Question Number</td>
<td>Questions</td>
<td>Score of “0”</td>
<td>Score of “1”</td>
<td>Score of “2”</td>
<td>Score of “3”</td>
<td>Score of “4”</td>
<td>Score of “5”</td>
<td>Score of “6”</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>7</td>
<td>During the past year, how often have you had a feeling of guilt or remorse after drinking?</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily or almost daily</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>During the past year, have you been able to remember what happened the night before because you had been drinking?</td>
<td>Never</td>
<td>Less than monthly</td>
<td>Monthly</td>
<td>Weekly</td>
<td>Daily or almost daily</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>Have you or someone else been injured as a result of your drinking?</td>
<td>No</td>
<td>Yes, but not in the last year</td>
<td>Yes, during the last year</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Has a relative or friend, doctor or other health worker been concerned about your drinking or suggested you cut down?</td>
<td>No</td>
<td>Yes, but not in the last year</td>
<td>Yes, during the last year</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C. Data Requirements

The CDS logic in this artifact is comprised of data elements that represent each of the clinical concepts in the CDS (e.g., AUD, pregnancy, alcohol screening results). **Table 8** lists each data element expressed in this artifact, along with the location(s) of the data element in CDS logic, the FHIR R4 resource used to express the data element, and the required FHIR R4 attributes and elements. The list provides a glimpse into the data required to execute this CDS, so implementers can gain a sense of how feasible it may be to utilize this CDS expression (based on availability of the required data in their health IT system). The standardized codes and value sets used to define each of the data elements can be found toward the top of the CQL code included in the zip file attached to this artifact in the CDS Connect repository.

<table>
<thead>
<tr>
<th>Data Element</th>
<th>Location in CDS Logic</th>
<th>FHIR R4 Resource</th>
<th>Required FHIR R4 Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Step 1 (Inclusions)</td>
<td>Patient</td>
<td>Patient.birthDate
Patient.extension("http://hl7.org/fhir/us/core/StructureDefinition/us-core-birthsex")</td>
</tr>
<tr>
<td>Sex at Birth</td>
<td>Steps 3 & 4</td>
<td>Birth Sex</td>
<td>code (see http://hl7.org/fhir/us/core/STU3.1/StructureDefinition-us-core-birthsex.html)</td>
</tr>
<tr>
<td>Alcohol Screening Results</td>
<td>Step 1 (Exclusions)</td>
<td>Observation</td>
<td>Observation.effective
Observation.issued
Observation.status = final, corrected, or amended (see https://hl7.org/fhir/R4/observation.html)</td>
</tr>
<tr>
<td>Pregnant</td>
<td>Steps 1 & 5</td>
<td>Condition</td>
<td>Condition.onset
Condition.recordedDate
Condition.clinicalStatus = active or recurrence
Condition.verificationStatus = confirmed (see https://hl7.org/fhir/R4/condition.html)</td>
</tr>
<tr>
<td>Data Element</td>
<td>Location in CDS Logic</td>
<td>FHIR R4 Resource</td>
<td>Required FHIR R4 Elements</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>Pregnant Observation</td>
<td>Steps 1 & 5</td>
<td>Observation</td>
<td>Observation.effective
Observation.issued
Observation.status = final, corrected, or amended
(see https://hl7.org/fhir/R4/observation.html)</td>
</tr>
<tr>
<td>AUD</td>
<td>Steps 1 & 4</td>
<td>Condition</td>
<td>Condition.clinicalStatus = inactive, remission, or resolved (in Step 4)
Condition.clinicalStatus = active, recurrence, or relapse (in Step 1)
(see https://hl7.org/fhir/R4/condition.html)</td>
</tr>
<tr>
<td>Alcohol PS Question</td>
<td>Steps 1 – 4</td>
<td>QuestionnaireResponse</td>
<td>QuestionnaireResponse.questionnaire = “alcohol PS question”
(see https://hl7.org/fhir/R4/questionnaireresponse.html)</td>
</tr>
<tr>
<td>USAUDIT-C Total Score</td>
<td>Steps 2 – 4</td>
<td>Observation</td>
<td>Observation.effective
Observation.issued
Observation.status = final, corrected, or amended
(see https://hl7.org/fhir/R4/observation.html)</td>
</tr>
<tr>
<td>USAUDIT Total Score</td>
<td>Step 1</td>
<td>Observation</td>
<td>Observation.effective
Observation.issued
Observation.status = final, corrected, or amended
(see https://hl7.org/fhir/R4/observation.html)</td>
</tr>
<tr>
<td>Hysterectomy</td>
<td>Step 5</td>
<td>Procedure</td>
<td>Procedure.status = completed
(see https://hl7.org/fhir/R4/procedure.html)</td>
</tr>
<tr>
<td>Pregnancy Question</td>
<td>Step 5</td>
<td>QuestionnaireResponse</td>
<td>QuestionnaireResponse.questionnaire = “pregnancy question”
(see https://hl7.org/fhir/R4/questionnaireresponse.html)</td>
</tr>
</tbody>
</table>
*Expressing alcohol screening results, a WHO AUDIT-C total score, and a WHO AUDIT total score as a FHIR Observation enables the CDS to evaluate historical data stored in a health IT system (i.e., screening results and scores that were recorded and saved prior to implementation of this artifact). See section 4.2, Guideline Translation Summary, item #3, (i.e., “Defining historical screening results...”) for the list of alcohol screening results considered in the CDS logic.

**Expressing alcohol screening results, a WHO AUDIT-C total score, and a WHO AUDIT total score as a FHIR QuestionnaireResponse enables the CDS to evaluate more recently captured data in a health IT system (i.e., alcohol screening results and scores that were recorded as a result of implementing this artifact).

Categorizing specific data elements in more than one way (e.g., as an Observation and a QuestionnaireResponse) allows for a thorough evaluation of patient data, which in turn enables the most accurate delivery of evidence based ASBI.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOG</td>
<td>American College of Obstetricians and Gynecologists</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ASBI</td>
<td>Alcohol Screening and Brief Intervention</td>
</tr>
<tr>
<td>ASSIST</td>
<td>Alcohol, Smoking and Substance Involvement Screening Test</td>
</tr>
<tr>
<td>AUD</td>
<td>Alcohol Use Disorder</td>
</tr>
<tr>
<td>AUDIT</td>
<td>Alcohol Use Disorders Identification Test</td>
</tr>
<tr>
<td>AUDIT-C</td>
<td>AUDIT-Consumption</td>
</tr>
<tr>
<td>CAGE</td>
<td>Cut Down, Annoyed, Guilty, Eye-opener</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>CDS</td>
<td>Clinical Decision Support</td>
</tr>
<tr>
<td>CMS</td>
<td>Centers for Medicare & Medicaid Services</td>
</tr>
<tr>
<td>CQL</td>
<td>Clinical Quality Language</td>
</tr>
<tr>
<td>CRM</td>
<td>Clinical Reasoning Module</td>
</tr>
<tr>
<td>EHR</td>
<td>Electronic Health Record</td>
</tr>
<tr>
<td>ELM</td>
<td>Expression Logical Model</td>
</tr>
<tr>
<td>FASD</td>
<td>Fetal Alcohol Spectrum Disorders</td>
</tr>
<tr>
<td>FHIR</td>
<td>Fast Healthcare Interoperability Resources</td>
</tr>
<tr>
<td>FFRDC</td>
<td>Federally Funded Research and Development Center</td>
</tr>
<tr>
<td>FSH</td>
<td>FHIR Shorthand</td>
</tr>
<tr>
<td>HHS</td>
<td>Department of Health and Human Services</td>
</tr>
<tr>
<td>HL7</td>
<td>Health Level 7</td>
</tr>
<tr>
<td>IG</td>
<td>implementation guide</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>NCBDDD</td>
<td>National Center on Birth Defects and Developmental Disabilities</td>
</tr>
<tr>
<td>NIAAA</td>
<td>National Institute on Alcohol Abuse and Alcoholism</td>
</tr>
<tr>
<td>NIDA QS</td>
<td>National Institute on Drug Abuse Quick Screen</td>
</tr>
<tr>
<td>ONC</td>
<td>U.S. Office of the National Coordinator for Health Information Technology</td>
</tr>
<tr>
<td>PS</td>
<td>Prescreen</td>
</tr>
<tr>
<td>SASQ</td>
<td>Single Alcohol Screening Question</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>SDC</td>
<td>Structured Data Capture</td>
</tr>
<tr>
<td>SMART</td>
<td>Sustainable Medical Applications, Reusable Technologies</td>
</tr>
<tr>
<td>SME</td>
<td>Subject Matter Expert</td>
</tr>
<tr>
<td>SUSHI</td>
<td>SUSHI Unshortens ShortHand Inputs</td>
</tr>
<tr>
<td>T-ACE</td>
<td>Tolerance, Annoyed, Cut-down, Eye-Opener</td>
</tr>
<tr>
<td>TDD</td>
<td>Test Driven Development</td>
</tr>
<tr>
<td>TWEAK</td>
<td>Tolerance, Worried, Eye-Opener, Amnesia, Cut-Down</td>
</tr>
<tr>
<td>USAUDIT</td>
<td>Alcohol Use Disorders Identification Test, Adapted for Use in the United States</td>
</tr>
<tr>
<td>USAUDIT-C</td>
<td>USAUDIT-Consumption</td>
</tr>
<tr>
<td>USPSTF</td>
<td>United States Preventive Services Task Force</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
List of References

The Office of the National Coordinator for Health Information Technology. (n.d.). Interoperability Standards Advisory: Representing Patient Sex (At Birth).

Notice

This document was produced for the U. S. Government under Contract Number 75FCMC18D0047, and is subject to Federal Acquisition Regulation Clause 52.227-14, Rights in Data-General.

No other use other than that granted to the U. S. Government, or to those acting on behalf of the U. S. Government under that Clause is authorized without the express written permission of The MITRE Corporation.

For further information, please contact The MITRE Corporation, Contracts Management Office, 7515 Colshire Drive, McLean, VA 22102-7539, (703) 983-6000.

© 2020 The MITRE Corporation.